
Software

User’s Guide

Café Duet™

Integrated Development
Environment for NetLinx Duet

(version 1.8)

Last Revised: 2/7/2007

Software License and Warranty Agreement
LICENSE GRANT.
AMX grants to Licensee the non-exclusive right to use the AMX Software in the manner described in this
License. The AMX Software is licensed, not sold. The AMX Software consists of generally available program-
ming and development software, product documentation, sample applications, tools and utilities, and miscella-
neous technical information. Please refer to the README.TXT file on the compact disc or download for further
information regarding the components of the AMX Software. The AMX Software is subject to restrictions on
distribution described in this License Agreement. YOU MAY NOT LICENSE, RENT, OR LEASE THE AMX
SOFTWARE. You may not reverse engineer, decompile, or disassemble the AMX Software.

INTELLECTUAL PROPERTY.
The AMX Software is owned by AMX and is protected by United States copyright laws, patent laws, interna-
tional treaty provisions, and/or state of Texas trade secret laws. Licensee may make copies of the AMX Soft-
ware solely for backup or archival purposes. Licensee may not copy the written materials accompanying the
AMX Software.

TERMINATION. AMX RESERVES THE RIGHT, IN ITS SOLE DISCRETION, TO TERMINATE THIS
LICENSE FOR ANY REASON AND UPON WRITTEN NOTICE TO LICENSEE.
In the event that AMX terminates this License, the Licensee shall return or destroy all originals and copies of
the AMX Software to AMX and certify in writing that all originals and copies have been returned or destroyed.

PRE-RELEASE CODE.
Portions of the AMX Software may, from time to time, as identified in the AMX Software, include PRE-
RELEASE CODE and such code may not be at the level of performance, compatibility and functionality of the
final code. The PRE-RELEASE CODE may not operate correctly and may be substantially modified prior to
final release or certain features may not be generally released. AMX is not obligated to make or support any
PRE-RELEASE CODE. ALL PRE-RELEASE CODE IS PROVIDED "AS IS" WITH NO WARRANTIES.

LIMITED WARRANTY.
AMX warrants that the AMX Software will perform substantially in accordance with the accompanying written
materials for a period of ninety (90) days from the date of receipt. AMX DISCLAIMS ALL OTHER WARRAN-
TIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH REGARD TO THE AMX SOFT-
WARE. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. Any supplements or updates to
the AMX SOFTWARE, including without limitation, any (if any) service packs or hot fixes provided to you after
the expiration of the ninety (90) day Limited Warranty period are not covered by any warranty or condition,
express, implied or statutory.

LICENSEE REMEDIES.
AMX's entire liability and your exclusive remedy shall be repair or replacement of the AMX Software that does
not meet AMX's Limited Warranty and which is returned to AMX. This Limited Warranty is void if failure of the
AMX Software has resulted from accident, abuse, or misapplication. Any replacement AMX Software will be
warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer. Outside the
United States, these remedies may not available.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO EVENT SHALL AMX BE LIABLE FOR ANY DAM-
AGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROF-
ITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY
LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS AMX SOFTWARE, EVEN IF AMX HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES/COUNTRIES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

U.S. GOVERNMENT RESTRICTED RIGHTS. The AMX Software is provided with RESTRICTED RIGHTS.
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subpara-
graphs (c)(1) and (2) of the Commercial Computer Software Restricted Rights at 48 CFR 52.227-19, as appli-
cable.

This Agreement replaces and supercedes all previous AMX Software License Agreements and is governed by
the laws of the State of Texas, and all disputes will be resolved in the courts in Collin County, Texas, USA.
Should you have any questions concerning this Agreement, or if you desire to contact AMX for any reason,
please write: AMX Corporation, 3000 Research Drive, Richardson, TX 75082.

Table of Contents

Introduction .. 1

What’s New in this Release .. 1

Café Duet version 1.8 features ... 1

Duet SDK features supported in this release 2

Café Duet Minimum System Requirements 2

Supported operating systems ... 2

PC requirements ... 2

NetLinx Master Requirements ... 3

Installing NetLinx Studio .. 3

Installing Café Duet ... 3

Launching Café Duet .. 8

Overview of the Duet Plug-in .. 9

Application Preferences .. 9

Setting up the Café Duet Preferences .. 9

Setting up the Manifest Editor Preferences 10

Creating a Duet Module Project .. 11

Defining the Module .. 14

Generating a new device class ... 16

Overriding or Implementing Methods .. 17

Duet Perspective ... 19

Debug Perspective .. 21

Accessing the Debug Perspective .. 22

Creating your own perspective ... 23

Duet Manifest Editor .. 24

Component Editor ... 30

Procedures for using the Extract Interface dialog 31

Using the Extract Interface dialog ... 32
i Café Duet v1.8 - User’s Guide

ii
Creating NetLinx-compliant Java Files 33

Compiling the Module Stub ...33

Packing a Module ..33

Quick Packing the Module ..37

Regenerating the Project files ... 37

Using NetLinx Studio to Transfer JAR Files 38

Downloading the Project Files to a Target Master 39

Using AMX WebUpdate to Update the Plug-in 39

Importing a Module into VisualArchitect 41

Creating a Sample Module ..43

Obtaining Pre-configured AMX Duet Modules 43

Creating a New Duet Module .. 44

Step 1 - Run the Module Wizard ...44

Step 2 - Adding Necessary Plumbing46

Step 3 - Adding the Device Specific Code49

Step 4 - Compile and Pack Process ...50

Step 5 - Regenerating Project files (if a change is made)50

Using SNAPI and Duet Modules in NetLinx Studio 51

Step 1 - Using SNAPI and NetLinx Studio51

Step 2 - The Compile Process - NetLinx Studio preparation51

Step 3 - Sending the file to the NetLinx Master52

Using Duet Remote Debug ..53

Default Settings and Initial Preferences 53

Default Compiler Compliance ...53

Default Duet Perspective Behavior ...54

Default Progress View - When Launching a Duet Remote Debug
Session ..55

Default Launch Timeout ..57

Accessing the Debug Perspective .. 58

Using Duet Remote Debug ... 58
 Café Duet v1.8 - User’s Guide

Key initial concepts ... 58

Duet Remote Debug Primer ... 59

Preparing a Duet Module for Debugging 60

Debugging a Duet Module .. 61

Setting Breakpoints and Watchpoints 62

Changing Variable Values During a Duet Debug Session 63

Making Incremental Code Changes and Starting a New Debug
Session .. 63

Finishing a Duet Debug Session ... 63

Duet Remote Debug Launch Configuration Error Messages 64

Reboot Sequence Problems ... 64

Appendix - Metadata .. 67
iii Café Duet v1.8 - User’s Guide

iv
 Café Duet v1.8 - User’s Guide

Introduction
Introduction
With Café Duet™, AMX opens the door to a broad knowledge base and vast programming
resources by integrating Java and NetLinx technologies. This NetLinx Duet architecture
extends the power of your existing NetLinx systems long into the future and expands the
capabilities of your future projects. As a plug-in to the main Eclipse© application, Café
Duet provides a unique dual-interpreter environment that supports either NetLinx or Java
programming, or both.

The Standard NetLinx API (SNAPI) router keeps NetLinx and Java in perfect sync. Café
Duet module development is fast and efficient within the Café Duet Integrated
Development Environment (IDE), using the Duet Software Development Kit (SDK).

The Duet SDK includes a module Wizard with several device-specific Application
Program Interfaces (APIs) to streamline module creation.

Additionally, you can leverage the CDC/Foundation Class Library of over 750 high-level
native Java language classes to simplify the programming of today's most complex
applications and interface modules.

Prerequisite to the installation of Café Duet is the presence of NetLinx Studio v2.4 (or
higher) on your PC. If you have not already installed NetLinx Studio, you will be
prompted to do so before installing Café Duet. This is to ensure that you are using the
latest NetLinx Compiler to build and extract the module files.

What’s New in this Release
Café Duet version 1.8 features

New to this release is the Cafe Duet Remote Debug functionality, which allows you to
debug Duet modules remotely by providing any valid IP Address for the NetLinx Master
running your code. See the Using Duet Remote Debug section on page 53 for details.

z Café Duet is now updated as a feature set of plug-ins from the Eclipse 3.1.0 to
the Eclipse 3.1.2 base platform.

z This release has improved Serial Connection selections in the Device Category
connection to improve specifications, differentiating "Serial" per RS-232, RS-
422, and RS-485 specifications.

z The Manifest Editor feature now supports external Device initialization
property settings and information sharing (e.g.: VisualArchitect).

z This release adds a new Module Initialization section.

z New device support is added for the UPS (Uninterruptible Power Supply)
device.
1 Café Duet v1.8 - User’s Guide

Introduction

2

z This release upgraded Duet Remote Debug’s Launch Configuration with a new
Environment Tab for advanced debug user controls of Pre-defined Debug
Environment variables.

Duet SDK features supported in this release

This release of Café Duet supports the following Device Module Application
Programming Interfaces:

Café Duet Minimum System Requirements
Supported operating systems

You must have Power User (or Administrator) rights to install and run all required System
files.

z Windows XP® Professional (service pack 1 or greater)

z Windows 2000® Professional (service pack 4 or greater)

PC requirements

z Pentium II 450 MHz processor (minimum); 700 MHz or faster recommended

z 150 MB of free disk space (minimum); 200 MB recommended

z 128 MB (RAM) installed for Windows 2000 or 256 MB for Windows XP

z VGA display with a minimum screen resolution of 800 x 600

Device Module Application Programming Interfaces
Amplifier HVAC Slide Projector

Audio Conferencer I/O (Input/Output) Switcher

Audio Mixer Keypad Text Keypad

Audio Processor Light TV

Audio Tape Monitor UPS

AudioTuner Device Motor Utility

Camera MultiWindow VCR

Digital Media Decoder PoolSpa Video Conferencer

Digital Media Encoder PreAmp Surround Sound
Processor

Video Processor

Digital Media Server Receiver Video Projector

Digital Satellite System Relay Video Wall

Digital Video Recorder Security System Volume Controller

Disc Device Sensor Device Weather

Document Camera Settop Box
 Café Duet v1.8 - User’s Guide

Introduction
z Windows-compatible CD-ROM drive

z Windows-compatible mouse (or other pointing device)

NetLinx Master Requirements
z NXC-ME260/64 or NI-Series Integrated Controllers

z Master firmware version 3.21.342 (or higher)

Installing NetLinx Studio
NetLinx Studio is used to setup a System number, obtain/assign the IP/URL for the
connected NetLinx Master, transfer firmware KIT files to the Master, and use JAR files
created by Café Duet.

If you are installing NetLinx Studio on a Windows XP or 2000 machine, you must have
Administrator rights to install and run all required System files.

In NetLinx Studio, select Help > About to check the version number of the NetLinx
Studio application currently installed. In order to install Café Duet, Studio must be version
2.4 (or higher).

If you have not already installed the latest version of NetLinx Studio on your PC:

1. Download the latest version of NetLinx Studio from www.amx.com > Tech Center
> Downloadable Files > Application Files > NetLinx Studio 2.4.

2. Save the file to a known location on your PC.

3. Once the entire setup file has been downloaded to your machine, locate and double-
click on the file called NS2Setup.exe to begin the installation process. Do not launch
(open) the file from the web.

4. Select both the default locations and installation settings.

5. Click OK once the install process has completed. You will be prompted to restart
your machine.

Installing Café Duet
This section describes installing Café Duet. You must have an active Internet connection to
complete the installation.

1. Verify that NetLinx Studio v2.4 (or higher) is already installed on the target PC.

2. Insert the Cafe Duet CD into your PC’s CD tray. The installation executable
(Setup_CafeDuet.exe) launches automatically and begins the installation wizard.

z If there is a problem launching the wizard, this file can be found on the root of
the CD’s directory.

3. If the latest version of NetLinx Studio is not detected the user is presented with the
following dialog (FIG. 1).
3 Café Duet v1.8 - User’s Guide

Introduction

4

z If this case, the only option is to click the Exit Setup button to exit the
installation process, install the latest version of NetLinx Studio, and then
restart the installation of Café Duet.

z The first screen displayed during a normal install is the Welcome screen,
containing various warnings and notices for the user.

4. Click the Next button to continue to the License Agreement screen.

5. Read the License Agreement, and select I Agree to accept the terms and conditions
(and enable the Next button). Only after selecting I Agree will the Next button
become enabled.

6. Click Next to continue the installation process.

7. From the Select Cafe Duet Installation Location screen, click Next to accept the
default Café Duet folder location
(C:\Program Files\AMX Control Disc\Cafe Duet).

8. If a previous version of Café Duet is detected on the target machine, the user is given
a visual notification (FIG. 2) and given the option to either uninstall the previous and
then continue with the current installation process or exit the setup process.

9. Click Next to continue with the installation of the new version.

FIG. 1 Café Duet Setup Termination screen

Click the Browse button to select a different directory for the
installation. If the hard drive selected has less than 125MB of free
space, you will be prompted to select another installation directory or
abort the current installation.
 Café Duet v1.8 - User’s Guide

Introduction
z If the hard drive location selected on the previous screen has less than 150MB
of free space, the user will receive Insufficient Disk screen. The only option
from this screen is to return to the previous screen and select another
installation directory or abort the installation process.

10. Click Next to continue to the Product Registration dialog (FIG. 3). Enter a First
Name, Last Name, and E-mail address before proceeding.

11. Click Next after this information has been completely entered.

FIG. 2 Café Duet - Previous installation detected screen

FIG. 3 Café Duet Setup License Registration screen
5 Café Duet v1.8 - User’s Guide

Introduction

6

12. In the License Registration dialog (FIG. 4), enter the Serial Number. The serial
number is printed on the Café Duet CD case.

This serial number will work on only one PC. Once the Serial Number has been
entered and a license key retrieved from AMX, you cannot install the software on a
different PC using the same serial number.

z The serial number entered here is transmitted to AMX for verification. You
must have an active Internet connection to complete this step. After the serial
number is registered, AMX generates a License Key for this installation and
locks the serial number to the target PC.

z The license key is transmitted back to your computer and then validated. Only
after the license key is validated will the installation proceed.

z Should the license key not match, an on-screen dialog informs you that the
serial number given is either invalid or already in use on another machine. If
you believe that you have received this message in error, use the dialog’s
information to contact AMX for further assistance.

FIG. 4 Café Duet Setup License Registration screen
 Café Duet v1.8 - User’s Guide

Introduction
13. Once the license registration process has successfully completed, the registration
dialog is then displayed with the information entered into the previous two dialogs,
including the entered Name, e-mail, Serial Number, and License Key retrieved from
AMX.

z Keep this information available (for possible future support use).

14. Click the Next button to complete the installation.

z If there is a failure during the registration process, contact AMX Technical
Support for assistance.

15. Click the Next button in the Program Manager Group screen. This screen allows you
to select the Program Manager group where you wish Café Duet to reside.

16. From the Shortcuts screen, select whether to install a Desktop shortcut, and click
Next.

17. The last screen indicates a successful installation of the application. Clicking the
Next button finalizes the installation process and launches the Café Duet application.

FIG. 5 Café Duet Serial Number Registration Error screen

If Café Duet is uninstalled, only the application is removed. User-
created files will remain on the PC, in the Café Duet directory.
7 Café Duet v1.8 - User’s Guide

Introduction

8

z The JRE (Java™ 2 Runtime Environment) is installed as part of the installation
executable.

z The Cafe Duet readme.txt file (located in C:\Program Files\ AMX Control
Disc\Cafe Duet) is also installed as part of the installation executable and
provides a description of the application and gives a version number.

z The JRE readme.txt file (located in C:\Program Files\ AMX Control Disc\Cafe
Duet\Jre) provides a description of the JRE and gives a version number.

Launching Café Duet

1. Double-click the Cafe Duet icon to launch the application. If selected during the
installation process, the icon appears on your desktop.

2. Once Café Duet begins to run, a Workspace Launcher appears on-screen (FIG. 6) and
asks you to select a workspace location.

z Use the Browse button to choose a folder location where the projects will be
stored.

z To maintain a selected directory as the default location for project storage even
after the session ends, select the Use this as the default and do not ask again
field.

FIG. 6 Workspace Launcher - Select a workspace screen
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Overview of the Duet Plug-in

Application Preferences
Configuration of the Café Duet application preferences is accomplished via the Duet -
Preferences and Manifest Editor - Preferences dialogs, as described in the following
sub-sections.

Setting up the Café Duet Preferences

1. From the menu bar, select Window > Preferences > Duet (FIG. 7).

z All directory and file locations are set to their default parameters. The four
available Café Duet general settings are:

z Platform Directory: location of the Duet platform (including the Device
SDK and the Duet Platform JAR files (API).

z NetLinx Compiler Path: location of the NetLinx Compiler executable.

z Module Export Directory: location where the module is packed (refer to
the Packing a Module section on page 33 for more information).

z Persist the Device Class Metadata during the process of packing the
module: by default this option is selected. When working with other
AMX Software, this option provides the ability to collect Device Class
information such as: Device Class functions, function parameters, etc., so
that future AMX applications can make smart decisions based on that
previously obtained metadata.

FIG. 7 Preferences dialog - Duet Preferences
9Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

10
If this option is not selected then the Device Class metadata information
is not collected; which in turn speeds-up the Module packing process.

Another result of disabling this option is that the JAR Export - Select
Methods dialog (FIG. 23) is then prevented from being displayed. This
can be helpful during the development phase, but remember to turn this
option back on when you are ready to release your module. This
generated metadata is very important to the VisualArchitect application
when building its system.

2. Use the Browse button to open a Browse For Folder dialog and change the folder/file
locations by navigating to a different location (if desired).

3. Once you’ve chosen a new location, press the OK button to accept and save your
changes.

Setting up the Manifest Editor Preferences

The fields within this window allow you to enter a set of Module descriptions/information
which then become the baseline standard for future modules. During the creation of any
future modules, these Manifest Editor information fields (such as Module-Vendor) become
pre-populated (filled-in) with the information entered within this window; thus saving you
time during the construction of consecutive modules.

1. From the Main menu, navigate to Windows > Preferences > Duet > Manifest
Editor (FIG. 8).

FIG. 8 Manifest Editor Preferences dialog
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
2. Enter the information within the following fields:

z Restore Defaults button: restores all fields to their factory default settings.

z Apply button: applies your changes to the whole Café Duet application.

3. Once you’ve made your changes, press the OK button to accept and save your new
Manifest Editor field information.

Creating a Duet Module Project
1. Select File > New > Project to launch the New Project Wizard. The first dialog in the

wizard is the New Project dialog.

2. In the New Project - Select dialog, choose the Duet Modules entry from the left
window, and Duet Module Project in the right window (FIG. 9).

• Module-ContactAddress Enter a contact address for the vendor (if necessary).
• An example is: 3000 Research Drive Richardson, TX

75082 or www.amx.com.

• Module-Copyright Enter copyright information for this module.
• An example is: Copyright (c) 2006 AMX Corporation.

All Rights Reserved.

• Module-DocURL This is a URL used to document this module.
• An example is: www.amx.com/device/switcher.

• Module-Vendor A text name of the module vendor.
• An example is: AMX Corporation.

• Module-UpdateLocation If the module is ever updated at some later date, this is the
location that should be used (if present) to retrieve the
updated JAR files.
• An example is: www.amx.com/device/switcher/update.

• Device-Make The manufacturer name of the device. This field can hold
up to 55 alpha-numeric characters and cannot be empty.
Text is required within this field.
• An example is: AMX Corporation.
11Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

12
3. Click Next to continue to the New Duet Module Project dialog (FIG. 9).

4. In the New Duet Module Project dialog, enter a descriptive name for the new project
(up to 55 alpha-numeric characters).

Note that by default, the Create new project in workspace option is selected.
If you want to change this directory location you must first select the Create Project
from existing source option and then click the Browse button to change this
directory.

The fields and options in this dialog include:

FIG. 9 Creating a new Duet Module project

• Project name: The Project name field must not be empty nor can it be a single
period character ("."). It must not end in a period character nor can
it contain any of the following characters: \\, /, :, *, ?, ", <, >, |.
• This field can not contain the following names as they are

reserved device names for the platform: aux, clock$, com1,
com2, com3, com4, com5, com6, com7, com8, com9, con,
lpt1, lpt2, lpt3, lpt4, lpt5, lpt6, lpt7, lpt8, lpt9, nul, prn.

• An example is: amxswitcher.

• Contents: This refers to the directory in which the new module project will be
created (indicated in the read-only Directory field).
• Create new project in workspace: When selected, the New

Project Wizard creates a new project with the specified name
within the workspace.

• Create project from existing source: When selected, you are
specifying the location from which the New Project Wizard will
retrieve an existing project.

• Use the Browse button to navigate to the location of an existing
project.

New Project - Select dialog New Duet Module Project dialog
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
5. Click the Next button to save the project name and continue to the Duet Module
Settings dialog.

6. Review the information displayed in the New Duet Module Project - Duet Module
Settings dialog (FIG. 10).

z The Source tab displays the source folder associated with your project.

z The Projects tab lists all projects imported into Duet are listed, despite where
they are located. They are only linked into the build process of the new project
if they are selected (checked-off) on this screen. This information can be edited
at a later point.

z The Libraries tab (FIG. 10) lists all currently available JAR/ZIP files located
within the Duet Platform Directories (C:\Program Files\Common
Files\AMXshare\Duet\lib and C:\Program Files\Common
Files\AMXshare\Duet\bundle folders).

- Click the Add External JARs button to incorporate additional JAR/ZIP files
to the Duet Module project.

• JDK Compliance: These selections determine which type of compiler compliance
your project will use.
• Use default compiler compliance: When selected, the New

Project Wizard creates a new project using the default compiler
compliance. The default compiler compliance can be configured
from within the Compiler Preferences page which is accessed
by selecting the blue Configure default... link located to the
right of this option.

• Use a project specific compliance: When selected, you are
given the option of selecting the compiler compliance from the
drop-down list of available options.

• Project layout: These selections configure the creation options for both the
source and output folders.
• Use project folder as root for sources and class files: When

selected, the project folder is used both as a source folder and
as an output folder for class files.

• Create separate source and output folders: When selected,
the New Project Wizard creates both a source folder for the
source files, and an output folder for the project’s class files.

In order to have the Duet module function properly on a target AMX
Master, you must select the Use default compiler compliance
(currently 1.4) option.

This dialog is used to enter Duet project build settings. The following
external JARs have been initially added to the project build path:
core. jar; devicesdk.jar; http.jar; j2me.jar; morpheus.jar;
oscar.jar; snapirouter.jar.
13Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

14
z The Order and Export tab allows you to use the Up and Down buttons to
move selected JAR/ZIP files or Class file containers up or down on the build
path order.

7. Click Next to complete the configuration of the Module’s build settings, and continue
to the New Duet Module - Duet Module Content dialog (FIG. 11).

Defining the Module

Use the options in the Duet Module Content dialog (FIG. 11) to define device properties
for the Module.

FIG. 10 New Duet Module Project - Duet Module Settings dialog (Source and Libraries)

FIG. 11 New Duet Module Project - Duet Module Content dialog
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
The options in this dialog include:

• Module-Name Enter the name of the developed module.This field can hold up to
55 alpha-numeric characters. Text is required within this field.
It can not be a single period character ("."). It must not end in a
period character nor can it contain any of the following characters:
\\, /, :, *, ?, ", <, >, |.
This field can not contain the following names as they are reserved
device names for the platform: aux, clock$, com1, com2, com3,
com4, com5, com6, com7, com8, com9, con, lpt1, lpt2, lpt3,
lpt4, lpt5, lpt6, lpt7, lpt8, lpt9, nul, prn.
• An example is: amxSwitcher.
Note: The project name determines the name of the default
generated Comm stub file which MUST MATCH the JAR file that is
generated along with the Comm file listed in the
Define_Module call for NetLinx users.

• Module-Version Enter the version of the module being developed. If this is the
second iteration (version) the default 1.0.0 could be renamed to
1.0.1 for tracking purposes. This is best used for version control
and history tracking.
This field can hold up to 55 numeric characters (including periods).
• It is recommended that you change the version number value

every time you make modifications to the module.
• A value is required within this field.
• The version must be in the format: major.minor.micro

(where major, minor, and micro are numbers).
• Proper examples are: 1.0 or 1.0.1.

Improper example such as: 1. and 1.0. will not work because of
the missing digits.

• Module-Version information is used to indicate that something
has been changed in the driver (ex. a fix).

• Device-Make Enter the name of the manufacturer for the device you are
developing the module for (up to 55 alpha-numeric characters).
Text is required within this field.
• An example is: AMX Corporation.
• The Device Make and Device Model field information determines

the Class name in the Duet Module Devices dialog.

• Device-Model Enter the model number of the device being configured (up to 255
alpha-numeric characters). You can enter a series of devices by
separating each with a comma. Text is required within this field.
Examples are: AMXSwitcher995 or AMXSwitcher123,
AMXSwitcher456.
The Device Make and Device Model field information determines
the Class name in the following Duet Module Devices dialog.

• Device-Category Select the control method used by the device that the module is
being developed for (IR, Serial RS-232, Serial RS-422, Serial RS-
485, Relay, IP, IP & Serial RS-232, IP & Serial RS-422, IP &
Serial RS-485, or Other).
Text is required within this field.
15Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

16
Click Next to save the device information and module settings, and continue to the New
Duet Module - Duet Module Devices dialog.

Generating a new device class

Select from a list of available Duet devices to generate a new device class, in the Duet
Module Devices dialog (FIG. 12).

• Device-Revision Enter the firmware version used by the target device (up to 55
alpha-numeric characters). Text is required within this field.
• An example is:1.0.0 (revision 1.0.0 of the device firmware).
• The version must be in the format: major.minor.micro

(where major, minor, and micro are numbers).
• The Module-Version information is used to indicate that

something has been changed in the driver (ex. a fix) whereas
the Device-Revision indicates something has changed in the
underlying driver's protocol (indicating a device firmware
change).

• An increment of the Device-Revision mandates an increment of
the Module-Version; but an increment of Module-Version does
not necessarily mean a change to the Device-Revision.

• Refer to the Regenerating the Project files section on page 37 for
those procedures necessary to regenerate the project files after
a change to the firmware version information.

• Device-GUID Enter the Device Global Unique Identification. This optional
information is provided by some manufacturers.

FIG. 12 New Duet Module Project - Duet Module Devices dialog
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Options in this dialog include:

Click Next to save your changes and continue to the New Duet Module Project - Override/
Implement Methods dialog.

Overriding or Implementing Methods

Within the Override/Implement Methods dialog (FIG. 13), you can choose whether to
either override or implement specific default device functions. Click to place a checkmark
adjacent to a function to override its default state.

• Package Name By default, this field is populated with
"com.make.model.device_revision"; it must be a valid Java
package name.
• If the user chooses to overwrite this information, the device’s

package name (up to 255 alpha-numeric characters) should be
unique to this module.Text is required within this field.

• An example is: com.amx.switcher.dr1_0_0
(where you are controlling an AMX switcher).

• Class Name The class name for this field is pre-generated with a combination
of the make and model entered on the previous Duet Module
Content dialog.
Note: The Class Name (up to 255 alpha-numeric characters)
is recommended to start with an uppercase letter.
Text is required within this field.
• An example is: AMXSwitcher.

• Available Devices Select from this list of available Duet devices
(com.amx.duet.devicesdk) to generate a new device class.
This list of available devices is pulled from the DeviceSDK.
Note: The default generated method stubs (which appear
within the Override/Implement Methods dialog) are
determined by this selection.

FIG. 13 New Duet Module Project - Override/Implement Methods dialog
17Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

18
Only override a method if you do not want the default base-class behavior. If a base-class
method is empty (i.e. has no implementation), do not call it from your source code, since it
might have an implementation in the future that is inconsistent with your code.

z The options in this dialog include:

z Select All: places a checkmark adjacent to each listing entry.

z Deselect All: removes any checkmarks adjacent to each listing entry.

Click the Finish button to save your wizard configurations, set your build paths, and create
your project.

Click Yes to confirm the use of the Duet Perspective (project default). You can also select
not to receive this message in the future.

From within the Module group, the handleAdvancedEvent() and
passthru() entries are recommended selections for all devices, as
is the selection of the dispose() entry ONLY for IP devices (used
for thread cleanup and such). Another recommendation is to select
nothing within the Object group.

• Method listing Provides a field with methods organized either by type/class or
alphabetically. This display is dependent on whether the Group
methods by types radio box is selected.

• Group methods
by type

This option determines how the methods are displayed for use.
• Select this option to organize and display the methods by type.
• De-select this option to display the methods alphabetically.
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Duet Perspective
Once the wizard has created a new project, the Duet Perspective is displayed (FIG. 14).
This display is the default layout view for the application. The main elements of this
perspective are described below:

z Package Explorer: this window shows the Java element hierarchy of the Duet
projects in your Workspace. The element hierarchy is derived from the
project’s build paths. For each project, its source folders and referenced
libraries are shown within the on-screen tree.

z Editors: this window provides a display area for the various available editors
such as:

z The Duet Manifest Editor is opened by double-clicking on the
manifest.duetmf file from META-INF folder in the Package Explorer
view or right-clicking on the file and selecting Open with > Duet
Manifest Editor. The manifest.duetmf file is similar to an ini file in the
sense that it is used by the Master to find a file and load it. This editor
outlines both the Module and User-Defined Manifest Items, as well as any
imported/exported packages or services. See the Duet Manifest
Editor section on page 24 for details.

z The Component Editor is opened by double-clicking on the
components.xml file from META-INF folder in the Package Explorer

FIG. 14 Default Duet Perspective

Editors

Outline

Viewer

Package Explorer
19Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

20
view or right-clicking on the file and selecting Open with > Component
Editor. This editor allows you to select a pre-populated interface and
change its port assignments. See the Component Editor section on
page 30 for details.

z The Java Editor is opened by double-clicking on either the
Activator.java, AMXSwitcher.java, or IAMXSwitcher.java entries
from within the Package Explorer view or right-clicking on the file and
selecting Open.

z Outline: this window displays an outline of the structure for the currently
active Java file located within the editor area.

z Debug: this window displays a Call Stack, a Control View for Watchpoint
(variable)/Breakpoint(line)/Expression(conditional) settings, the Java Editor
view, and current class Outline tree.

z Viewer: this window consists of the following elements:

z The Web Browser view provides the user with an embedded browser
used to display HTML information. This allows a connection to the
Master's web server to run diagnostics and view the Online Tree.

z The Problems view displays any currently logged problems or issues
associated with your project. As you work with resources in the
workbench, other builders might automatically log problems, errors, or
warnings in this view. as an example, when you save a Java source file
that contains syntax errors, those are then logged in the listing within this
view. When you double-click the icon for a problem, error, or warning,
the editor for the associated resource automatically opens to the relevant
line of code.

z The Tasks view displays system-generated errors, warnings, or
information associated with a resource. These are typically produced by
builders.
For example, if you save a Java source file that contains syntax errors, the
errors will be logged within this view.

z The Console view shows the output of a process and allows you to
provide keyboard input to the process. This view shows three different
types of text: Standard Output, Standard Error, and Standard Input.

z The Bookmarks view displays any user-defined bookmarks. The
Description column contains description of the bookmark. The Resource
and In Folder fields contain both name and resource location of each
bookmark. The Location column describes the line number of the
associated bookmark within its resource.
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Debug Perspective
The Debug perspective contains elements specific to Duet Remote Debug operations.

The main elements of this perspective are described below:

z Debug: this window displays a Call Stack, a Control View for
Watchpoint(variable)/Breakpoint(line)/Expression(conditional) settings, the
Java Editor view, and current class Outline tree.

z Editors: this window provides a display area for the various available editors.

z Outline: this window displays an outline of the structure for the currently
active Java file located within the editor area.

FIG. 15 Debug Window

FIG. 16 Editors Window
21Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

22
z Viewer: this window consists of the following elements.

z The Tasks view displays system-generated errors, warnings, or information
associated with a resource. These are typically produced by builders. For
example, if you save a Java source file that contains syntax errors, the errors
will be logged within this view.

z The Console view shows the output of a process and allows you to provide
keyboard input to the process. This view shows three different types of text:
Standard Output, Standard Error, and Standard Input.

Accessing the Debug Perspective

The Debug perspective contains elements specific to Duet Remote Debug operations. To
access this perspective:

1. Click the Open Perspective toolbar button and select Other from the
drop-down to open the Select Perspective dialog.

2. Select Debug and click OK.

See the Debug Perspective section on page 21 for a description of the elements in the
Debug perspective.

FIG. 17 Outline Window

FIG. 18 Viewer Window
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Creating your own perspective

You can define your own perspective (arrangement of windows) to be shown within the
Café Duet application:

1. To manually reconfigure the default perspective:

z Remove any current windows by selecting the X (located at the
upper-right of each window).

z Add new windows to your perspective by selecting Window > Show View and
then selecting a window to open. Each of these new views are then opened
within the currently active perspective.

z Save your new custom perspective by then selecting Window > Save
Perspective As.

z From within the Save Perspective As dialog, enter a name for the new custom
perspective and press the OK button.

2. Customize your perspective automatically:

z Switch to the perspective you want to configure.

z Select Window > Customize Perspective to open the Customize Perspective
dialog.

z Expand the item you want to customize and place a checkmark adjacent to the
items you want to have displayed within the new perspective.

z Click the OK button when you are done.

z Save your new perspective by selecting Window > Save Perspective As.

z From within the Save Perspective As dialog, enter a name for the new custom
perspective and press the OK button.
23Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

24
Duet Manifest Editor
This editor outlines both the pre-populated Module and User-Defined Manifest Items for
the current Duet project.

Open this editor (FIG. 19) by double-clicking on the manifest.duetmf file from the
META-INF folder in the Package Explorer view (FIG. 14) or right-clicking on the file and
selecting Open with > Duet Manifest Editor.

FIG. 19 Duet Manifest Editor
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
The following table provides a description of the fields and sections within this editor.

Duet Manifest Editor
Module Manifest Items:

Module Name: • Name of the current project.
• This name must consist of a series of at most 55 alphanumeric

characters and should be as descriptive as possible.
• This field cannot be empty.

Module-Version: • The version of the module being developed. This information is best
used for version control and history tracking.

• This field can hold up to 55 alpha-numeric characters.
• The version must be in the following format: major.minor.micro

(where these are numbers).
• This field cannot be empty.
• It is recommended that you change the version number value EVERY

TIME you make any modifications to the module.
• Module-Version information is used to indicate that something has

been changed in the driver (ex. a fix).

Device-Activator: • This drop-down list provides the activator’s type name. Every device
has an Activator which is a pre-generated code provided by Café
Duet.

• An example is: com.amx.switcher.dr1_0_0.Activator.
• This field cannot be empty and must be a valid Java Class Type

name.

Device-Make: • The manufacturer name.
• This field can hold up to 55 alpha-numeric characters.
• An example is: AMX Corporation.
• This field cannot be empty.

Device-Model: • The specific model number of the device being configured.
• This field can hold up to 255 alpha-numeric characters.
• This field cannot be empty. You can enter a series of devices by

separating each with a comma (see example below).
• Examples are: AMXSwitcher995 or AMXSwitcher123,

AMXSwitcher456.

Device-Category: • This drop-down list provides choices for the control method used by
the device.

• Available choices are: IR, Serial RS-232, Serial RS-422, Serial RS-
485, Relay, IP, IP & Serial RS-232, IP & Serial RS-422, IP & Serial
RS-485, or Other.

• This field cannot be empty.
25Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

26
Duet Manifest Editor (Cont.)
Device-Revision: • The firmware version installed within the device being used.

• This field can hold up to 55 alpha-numeric characters and is required.
• The version must be in the following format: major.minor.micro

(where these are numbers).
• An example is: 1.0.0 (revision/version 1.0.0 of the device firmware).
• The Module-Version information is used to indicate that something

has been changed in the driver (ex. a fix) whereas the
Device-Revision indicates something has changed in the underlying
driver's protocol (indicating a device firmware change).

• An increment of the Device-Revision mandates an increment of the
Module-Version; but an increment of Module-Version does not
necessarily mean a change to the Device-Revision.

• Refer to the Regenerating the Project files section on page 37 for
those procedures necessary to regenerate the project files after a
change to the firmware version information.

Device-SDKClass: • The device parent class. This field is pre-populated by the
application.

• An example of an SDKClass is: com.amx.duet.devicesdk.Switcher.
• This field cannot be empty and must be a valid Java Type name.

Device-SDKInterface: • The parent class of the device interface. This field is pre-populated
by the application.

• An example of an SDKInterface is:
com.amx.duet.devicesdk.ISwitcher.

• This field cannot be empty and must be a valid Java Type name.

Device-Class: This is a fully qualified name of the device class. The class name
is chosen within the Wizard. This field information is generated by
the application.
• An example of this device class is:

com.amx.switcher.dr1_0_0.AMXSwitcher.
• This field cannot be empty and must be a valid Java Type name.

Device-Interface: • The interface name for the device class. Refer to the Procedures for
using the Extract Interface dialog section on page 31 for the
procedures necessary to populate this field.

• This field is optional but if used must be a valid Java Type name.

Device-Channels: • The number of available device channels.
• The device channel range is between 255 and 65535 (default is 255).

Device-Levels: • The number of available device levels.
• Most devices use 8 levels or less, with the exception of the following

devices which use the nearest "8" boundary as their default:
- Video Projector and Monitor use levels 1 - 14 (default 16)
- Camera uses level 1 - 30 (default 32)
- HVAC users level 1 - 38 (default 40)
- PoolSpa uses levels 1 - 42 (default 48)
- Weather users levels 1 - 48 (default 48)

UI-Template • Specifies the type of UI required for a given module.
• This is an advanced file type used by the VisualArchitect application.
• An example of a template file name is:

[device#SecurityNapcoGemini]Security

Device-GUID: • This is an abbreviation for Device Global Unique Identification.
• This optional information is provided by some manufacturers.
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Duet Manifest Editor (Cont.)
Duet-Firmware-Version: • Displays the current version of Duet Firmware loaded on your target

Master.
• This value is preset as v3.00.316, but if you use later firmware-

specific functionality (associated to later versions) this field must be
updated to conform to that later version of your target Master’s Duet
firmware.

• This information can be found within the NetLinx Device API
Reference or Utility API Reference documentation (within the Class
Type and Since tag sections).

• Note: Not updating this field information can cause both the
runtime to both the target Master and the firmware-specific
functionality not to work properly.

Module-ClassPath: • It is a comma separated list of JAR file path names (inside the
module) that should be searched for items such as classes and
resources. The (’.’) specifies the module itself.

• An example is: /jar/http.jar.

Module-ContactAddress: • The contact address for the vendor (if necessary).
• An example is: 3000 Research Drive Richardson, TX 75082 or

www.amx.com.

Module-Description: • This is a short description of this module.
• An example is: Duet Module for AMX Switcher.

Module-DocURL: • This is a URL used to document this module.
• An example is: www.amx.com/device/switcher.

Module-UpdateLocation: • If the module is ever updated at some later date, this is the location
that should be used (if present) to retrieve the updated JAR files.

• An example is: www.amx.com/device/switcher/update.

Module-NativeCode: • A specification of native code contained within this module’s JAR file.

Module-Copyright: • The copyright information for this module.
• An example is: Copyright (c) 2007 AMX. All Rights Reserved.

Module-Vendor: • A text description of the vendor.
• An example is: AMX.

Device-Specific/User-
Defined Manifest Items:

• This section specifies any additional Device-specific/User-defined
manifest items.

• Add a manifest items by pressing the Add button or remove
additional manifest items by placing a checkmark next to the entry
and using the Remove button.

• Manifest items are entered within the two fields in the following
format:
- The first field is the Header/Key (the header/key must be unique).
- The second field is the Value.
27Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

28
Duet Manifest Editor (Cont.)
Module-Initialization
Manifest Items

• This section specifies any Module-Initialization manifest items.
• Add a Module-Initialization manifest item by pressing the Add button

or remove Module-Initialization manifest items by placing a
checkmark next to the entry and using the Remove button.

• Module-Initialization Manifest items are entered within the two
required fields plus two optional fields, in the following format:
- Name: The first field is the Name (which must be unique) of the
Module-Initialization property.
- Datatype: The second field is the Datatype of the Module-
Initialization property with three possible values in the Drop-Down List
Box: String (default), Integer, or Boolean.
- (optional) Default Value: The third field is the Default Value for a
Module-Initialization property, if any.
- (optional) Range: The fourth field is the Range with a String of range
values, if any, for a Module-Initialization property that conforms to an
external application's validity rules.

Import Packages: • This section specifies the package names (with optional version
specifications) that must be imported. These packages must be
exported by other modules.

• Add a package by pressing the Add button or remove packages by
placing a checkmark next to the entry and using the Remove button.

• Packages added by the Café Duet Module wizard should not be
removed.

• Fill the version fields with the specification version in the following
format:’major.minor.micro’ (include the periods between the
numbers).

• An example is: com.amx.duet.da or com.amx.duet.devicesdk; with
the specification version of 1.0.0.

Export Packages: • This section specifies the package names (with optional version
specifications) that can be exported.

• Add a package by pressing the Add button or remove packages by
placing a checkmark next to the entry and using the Remove button.

• Fill the version fields with the specification version in the following
format:’major.minor.micro’ (include the periods between the
numbers).

• If the package is repacked later, it must then be updated within
the editor. Exported Packages must be unique among all modules.

• Refer to the Regenerating the Project files section on page 37 for
those procedures necessary to regenerate the project files after a
change to the firmware version information.

• An example is: com.amx.switcher.dr1_0_0; with the specification
version of 1.0.0.

File Dependencies: • This section specifies the files (to be imported) that contain the
packages and services the module requires.

• Add a JAR or ZIP file by pressing the Add button.
• Remove a JAR or ZIP file by placing a checkmark next to the entry

and using the Remove button.
• Pressing the Add button displays a File Selection dialog that allows

you to navigate to the file location. Once the file is selected, press the
Open button to import the file.

• File dependencies added by the Café Duet Module Wizard
should not be removed.
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Duet Manifest Editor (Cont.)
Import Services: • This section specifies the services the module may use.

• Add a service by pressing the Add button or remove services by
placing a checkmark next to the entry and using the Remove button.

• Pressing the Add button displays the Selection needed dialog. This
dialog allows you to select the services you want to import.

• Click OK to save your selections and return to the Duet Manifest
Editor.

• An example is: org.osgi.service.log. The leader (shown to the left of
the entry) is intended for use by the server side management tools.

Export Services: • This section specifies the services the module may register.
• Add a service by pressing the Add button or remove services by

placing a checkmark next to the entry and using the Remove button.
• Pressing the Add button displays the Selection needed dialog. This

dialog allows you to select the services you want to export.
• Press the OK button to save your selections and return to the Duet

Manifest Editor.
• An example is: org.osgi.service.http. The leader (shown to the left of

the entry) is intended for use by the server side management tools.

Service Selection dialog: • This dialog provides all the services available for either import or
export.

• Press the Select All to choose all displayed services.
• Press the Deselect All to remove the checkmark for alongside all

available services.
• Press the More button to begin searching for more available services

and display the Choose Services dialog (refer below for more
information).

• Press the OK button to save your selections and return to the Duet
Manifest Editor.

Package Selection dialog: • This dialog provides all the packages available for either import or
export.

• Press the Select All to choose all displayed services.
• Press the Deselect All to remove the checkmark for alongside all

available packages.
• Press the OK button to save your selections and return to the Duet

Manifest Editor.

Choose Services dialog: • This dialog provides a listing of all available services.
• The Open Type field allows you enter a letter and then have the

service listing locate only those entries that match. If you enter an N,
the list changes to show all entries beginning with the letter N.
Enter the letters na and the list only shows those entries that begin
with na.

• The green C icons within the service listing represent Classes.
• The purple I icons within the service listing represent Interfaces.
• To add the new service, select the entry and press the OK button to

return to the Export Services section of the Manifest Editor where
your new selection is now shown. Multiple selections are permitted.
29Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

30
Component Editor
This editor defines the pre-populated Component Interfaces and their Port Assignments.
The interfaces are based on the parent device. Some example Switcher Component
Interfaces are: ISwitcherComponent, IVolumeComponent, and IGainComponent.

This editor allows you to specify the number of ports per component; starting at 1.

Open this editor (FIG. 20) by double-clicking on the components.xml file in the
META-INF folder in the Package Explorer view (FIG. 14) or by right-clicking on the file
and selecting Open with > Component Editor.

FIG. 20 Component Editor

The Port assignment/Index listings are ordered and can’t be modified.
A zero (0) means there is no port assignment.

Editable

Non-editable
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
The following table provides a description of the fields and sections within this editor.

Procedures for using the Extract Interface dialog
1. Before starting, save any changes to your Editor prior to continuing.

2. Right-click a Java file from the Package Explorer view (FIG. 14) and select
Duet > Extract Interface to open the Extract Interface dialog (FIG. 21) or click the
Interface toolbar button.

z If there are any unsaved changes in an active editor, the Save all modified
resources dialog (FIG. 21) prompts you to save any changes made to the
module prior to continuing. Press OK to save your changes and continue
extracting the interface.

z Select the Always save all modified resources automatically prior to
refactoring option to automatically save all changes and suppress this dialog
the next time you choose the Extract Interface option.

Component Editor
Component Interfaces: • This section of the editor provides a listing of all pre-populated interfaces

(based on the parent device).
• The purple I icons represent Interfaces.
• Select an Interface from within this section of the editor to begin configuring/

altering the Port Assignments.

Interface Details: • This section of the editor defines the port assignments for the Interfaces
selected from within the Component Interfaces listing.

• Port assignments are ordered and can’t be modified.
• An entry of zero (0) means there is no port assignment.

FIG. 21 Save all modified resources and Extract Interface dialogs

Save all modified resources dialog Extract Interfaces dialog
31Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

32
Using the Extract Interface dialog

1. Configure the parameters and members to declare in the interface:

z Interface name: Name of the device interface.

z Change references to the class...: Select this option to alter all instances of the
word ‘AMXSwitcher’ within the code to ‘IAMXSwitcher’.

z Declare interface method as ‘public’: Select this field to make the interface
methods become public.

z Declare interface method as ‘abstract’: Select this field to make the interface
methods become abstract.

z Members to declare in the interface: Select the methods (in the original
class) which you want to have declared within the interface. Use the Select All/
Deselect All buttons to select/deselect all entries in this dialog.

z Preview: Allows you to preview your selections within the code, as presented
within the Extract Interface preview window (FIG. 22).

2. Press OK to save your changes, compile the module, and return to the active editor.

FIG. 22 Extract Interface preview window
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Creating NetLinx-compliant Java Files
Before the Café Duet created module files can be used by NetLinx Studio, they must first
be properly created and then exported, which involves:

z Compiling the module stub

z Packing the module files to a JAR file

z Quick Packing the Module

z Using NetLinx Studio to Transfer JAR Files

Compiling the Module Stub

This step must be done before you prepare the packing of the module files for export.

Right-click on the *.AXS file (located below the META-INF folder) from within the left
Package Explorer view (FIG. 14) and select Duet > Compile Module Stub. Module stub
is the gateway to the accessor (which points the NetLinx program to the appropriate
module JAR file).

z This process compiles the NetLinx stub (using the NetLinx Compiler) and all
of the information is then displayed within the Console Browser view (shown
at the bottom of the application window). Use of the latest NetLinx Compiler
is why the NetLinx Studio application must be both installed prior to Café
Duet and be kept up to date before being used to compile any module files.

z The output of this process is a compiled AXS file and the creation of a TKN
and TKO file. It is the TKO file that is the most important component of the
packed/exported JAR file (created within the following section).

Packing a Module

The process of packing a module involves selecting the files (making up the module) being
packed within the JAR file, encrypted (if desired), and then exported out to a pre-defined
directory for use within NetLinx Studio. If more than one project is currently open, the
Pack Module selection refers to the project of the last file selected.

1. Right-click anywhere within the Package Explorer view (FIG. 14) and select Duet >
Pack Module.

z You will have to compile before continuing.

2. From within the JAR Export - Select Methods dialog (FIG. 23), expand the displayed
module and select which methods the current module will support by placing a
checkmark alongside each method.
33Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

34
z All public functions within that module’s Device Class are then selected by
default.

z The collected metadata is then used by the VisualArchitect application to build
its device database and in turn automate the system program generation
process.

3. Click Next to open the JAR Export wizard dialog (FIG. 24). This is the next step in
the JAR export process where you can define which resources are packed into an
exported JAR file.

FIG. 23 Selecting the methods for JAR export

If you do not want the above dialog to show up every time you are in
your development phase; you can disable it from within the
Preference > Duet dialog, by unchecking the "Persist the Device
Class Metadata during the process of packing the module" (see
FIG. 7). Remember to turn this option back on when you are ready to
release your module. This generated metadata is very important to
the VisualArchitect application when building its system.

Expand each selection and check-off all desired methods
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
4. Select which available module resource files will be encrypted and/or packed for
export.

z Resources to export: provides a listing of selectable module resources. Within
each of these resources is a series of files that can either be selected or
deselected for packing.

z Files contained: this is the selectable listing of files contained within each
resource. When a resource is highlighted/selected from the left Resources to
export section, its contained files are shown within the right section of the
dialog.

z Select a resource by placing a checkmark next to the resource name. Once
that resource is selected, the right section of the dialog shows all
contained files available for packing.

z Specify exactly which files you want to export within the JAR by placing
or removing a checkmark in the box adjacent to each file.

FIG. 24 Exporting a Module using the JAR Export dialog

When packing a module using helper classes:
- Expand the project from within the "Select the resources to
export:" section shown above.
- Select the package.
- From the right of the dialog window, make sure the helper class
filename has been checked.

Make sure to
select the
package, expand
the selection,
and check-off
all desired
files
35Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

36
z If encryption is available for a particular file, the Encryption column will
display an encryption status for these files. If encryption is not available
for a file, the Encryption button will be greyed-out.

z Encryption button: this button enables you to modify the encryption status of a
particular file. If the selected file currently has no encryption, the button reads
Enable Encryption. If the selected file is currently encrypted, the button reads
Disable Encryption.

z Only JAVA files can be encrypted. Only the Master can decrypt these
files. They can’t be decrypted by any other PC-based machine or
application.

z Use the Ctrl button to select multiple files at one time.

5. Choose an export destination for the compressed JAR file by pressing the Browse
button from within the Select the export destination - JAR file field.

z Either type in a valid external file system path and name for the JAR file (either
new or existing) or use the Browse button to select a file location using the
Browse Navigator dialog.

z This field is pre-populated with the location of the default directory:
C:/Program Files/Common Files/AMXShare/Duet/Module/XXX.jar. The name
of the JAR file must match the name used in the Module-Name Manifest
entry. The project name determines the name of the default generated Comm
stub file which MUST MATCH the JAR file that is generated along with the
Comm file listed in the Define_Module call for NetLinx users.

6. Choose whether to compress the JAR file (and contents contained therein) by placing
a checkmark next to the Compress the contents of the JAR file radio box. This
selection remains active until it is later deselected.

7. Choose whether to overwrite any previous instance of a similarly named JAR file
(within the same export directory) without being prompted for approval by placing a
checkmark next to the Overwrite existing files without warning radio box. This
selection remains active until it is later deselected.

Interface files should NOT be encrypted (since Interface files do
not contain implementation).

This default location can be modified from within the Module Export
Directory field located within the Duet Preferences dialog (refer to the
Setting up the Café Duet Preferences section on page 9 for more
details).
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
8. Press the Finish button to complete the packing of the module’s JAR file to the
destination folder. The next step is to open NetLinx Studio and import the saved JAR
file.

Quick Packing the Module

Quick Packing is a command procedure that mimics the Pack Module action.

If you do not use the Pack the Module action first, you will get an error message that
states: "You have to pack the module first to cache the session property into memory".

Regenerating the Project files
Making an alteration to the Duet Manifest Editor’s Device-Revision field information can
affect several aspects of your current project. An example of this need can be seen if you
have to change your switcher’s firmware from 1.0.1 to 1.0.2 because of a new firmware
release.

Rather than taking the time to navigate every affected field and parameter, regenerating the
project automates this update process, and makes these changes effective within a few
seconds.

This is not limited only to the Device-Revision field but is also a way of "synching-up" the
information found within the Manifest Editor fields and the data located within the
NetLinx Stub file.

The following steps outline a sample regeneration based on a change to a device’s
firmware revision:

1. Open this editor by double-clicking on the manifest.duetmf file from the META-INF
folder in the Package Explorer view or right-clicking on the file and selecting Open
with > Duet Manifest Editor.

2. Update the firmware version information (given in a X.X.X format) within the
Device-Revision field of the Module Manifest Items section.

3. Regenerate the project by either clicking the Regenerate icon from below the Main
menu or right-click anywhere within the Package Explorer view and from the on-
screen context-sensitive menu select Duet > Regenerate. The affected items are:

z Package name

z NetLinx Stub filename

z Content within the NetLinx Stub file

You must first Pack the Module before being able to use this feature.
Packing properties are not saved when Duet is simply closed, but
rather only packing the Module saves these packing properties. Refer
to the previous Packing a Module section on page 33 for more
information.
37Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

38
z Duet Manifest Editor field items affected/updated:
- Module-Name
- Module-Version
- Device-Activator
- Device-Class
- Device-Interface (if available)
- Export-Package

4. Confirm that all of the above components have been properly updated.

Using NetLinx Studio to Transfer JAR Files
1. Launch NetLinx Studio version 2.4 (or higher).

2. Press the Workspace tab to open the Workspace window (located on the right-side of
the application).

3. Right-click on the Module folder (located within the Workspace window) and select
Add Existing Module File.

4. From within the Add Existing Module File dialog:

z Either type in a valid external file system path and name for the JAR file (either
new or existing) or use the Browse button to select a file location using the
Browse Navigator dialog.

z This location of the default export module directory is:
C:/Program Files/Common Files/AMXShare/Duet/Module/.

z The default module folder should contain a JAR file for use during this import
process.

5. Use the Files of Type drop-down listing and choose Duet Module Files (*.jar) to
display all available JAR files found within this directory.

z The default selection of this field is Source Files (*.axs). This must be changed
to *.jar files.

6. Press the Open button once you’ve made your JAR file selection. A File Properties
dialog then appears to confirm the JAR file information prior to addition.

7. Press the OK button to confirm the addition of the selected file. Once the JAR file is
properly added to the NetLinx project file, it appears within the Module folder on the
Workspace window.

Duet Module Virtual Device range is from: 41000-42000. This device
range should be used within the DEFINE_VARIABLE section of the
NetLinx program.
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
Downloading the Project Files to a Target Master
1. Prepare the project for download to a NetLinx Master by confirming that all

necessary JAR files have been added to the Module folder within the active
Workspace. Refer to the Using NetLinx Studio to Transfer JAR Files section on
page 38 for more information.

2. From the Main menu, navigate to Build > Active System. This begins the process of
compiling the NetLinx project. Verify the application has successfully compiled the
project (0 errors 0 warnings).

3. Once the NetLinx program has successfully compiled, select Tools > File Transfer
to open the File Transfer dialog.

4. Press the Add button to invoke the Select Files for File Transfer dialog.

5. From within the Current Workspace tab, navigate down the Projects hierarchy until
you find the tkn file specific to your active NetLinx Studio project.

6. Place a checkmark next to this tkn file. This should place a checkmark alongside all
options corresponding to this project.

7. Press the OK button to accept your selection and return to the main File Transfer
dialog.

8. Press the Send button to begin the download process to the target Master.

Using AMX WebUpdate to Update the Plug-in
One of the concepts to understand when using Café Duet is that it is a plug-in to a main
application called Eclipse©. Duet can only be updated by using AMX’s WebUpdate
program.

The AMX WebUpdate program is a stand-alone application that communicates with the
AMX website, allows a user to select from a list of available AMX Software programs to
choose for updating, determines the latest version of the selected applications, returns a
listing of available updates, allows a user to download the selected installation files, and
upon request, launches the installation of those downloads.

z The WebUpdate application is not installed by NetLinx Studio or Café Duet,
and must be installed separately. If not found, Studio or Duet will prompt you
to download the application from www.amx.com.

To download a file to a secure Master, the security information must
first be pre-configured within the Master Comm Settings dialog by
requiring authentication of a Username and Password.
If you do not have download rights to the secured Master, you will
receive an “Authentication error” message.
39Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

40
z The application’s drop-down Help menu has an entry for Software Updates
which is specific to the Eclipse application and does not apply to the Duet
plug-in.

z Prior to updating Duet, you must use FIRST update the AMX WebUpdate
program outside of main Duet application. This update is necessary before
being able to update Duet via the AMX WebUpdate option of the Help
drop-down menu.

Follow these procedures to download and install any updates from within the Café Duet
application:

1. If you have not already done so, create an AMX.COM user account and login to
confirm a successful activation. Refer to the AMX WebUpdate Help file for specific
sign-up, login, and download procedures.

2. Select Help > AMX Web Update to launch the AMX Web Update application.

3. If your WebUpdate program requires an update, the installer will automatically
launch and the new setup executable will begin the process of updating this
application. Refer to the WebUpdate on-line help for details and instructions.

z WebUpdate uses the serial number, license number, and hard drive ID on the
PC and compares it to the registered information found on the WebUpdate
Server.

z If there is a match, you will be presented with the updates to Café Duet and
allowed to download the file.

z If there is not a match between the sources, you will not be presented with the
Café Duet updates and therefore will be unable to install the files.

4. Once you’ve confirmed that you WebUpdate application is up to date, select Help >
AMX Web Update to launch the AMX WebUpdate application.

Café Duet is a purchased application and requires a valid license. If
you do not have a valid key, you will not be able to view any updates
within the WebUpdate listing of downloadable files or be allowed to
install the application updates.

Updating of the WebUpdate program is not optional. If a new
WebUpdate version exists, it is required, and must be done prior to
any Duet updates. It is the first update downloaded and also the first
update installed.

If you have a valid license, but at some future point replace your hard
drive, you must contact AMX to update your information before being
able to further use WebUpdate. The hard drive ID is part of the
information used to confirm the validity of the Café Duet license and
update rights.
 Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in
5. If there are new updates available for Duet, you will be notified of such within the
AMX WebUpdate popup.

6. Click OK from within this popup to begin the installation process. If there are no new
updates available, this popup will display the following message: No updates are
required at this time.

z If WebUpdate has not already done so, you may be asked to close Café Duet in
order to make any necessary updates to the application.

7. After the completion of the update process, launch the Café Duet application and
confirm your updates have been properly installed by navigating to the Help > About
Café Duet dialog where you can confirm any version updates.

Importing a Module into VisualArchitect
In some projects, you may find it necessary to import a previously created Café Duet
module into VisualArchitect instead of creating a new one. These may include third-party
modules or modules designed for another project. To import a previously created Café
Duet module into VA:

1. Launch VA.

2. Copy your module JAR files to the appropriate directory. VA searches particular
directories when building or updating its device database, so copying the JAR files to
one of those directories is highly recommended. If you are not sure what the paths
are, select Device Database Search Paths Manager from the Managers menu
(FIG. 25). .

FIG. 25 Device Database Search Paths Manager
41Café Duet v1.8 - User’s Guide

Overview of the Duet Plug-in

42
3. If you add a new path or change one of the existing paths, VA will automatically

search all the paths and rebuild the device database for you. If your jar files were in
one of those directories, you can skip this step.

When Café Duet and VA are first installed on the same PC, they will both point to the

same path by default. Café Duet's Module Export Directory and VisualArchitect's

Device Database Search Path would be:

C:\Program Files\Common Files\AMXShare\Duet\module

Nothing prevents a user from changing this path in Café Duet or VisualArchitect, as
they are maintained separately. The point is that even if both applications are on the
same PC, you still might have to copy jar files from the Café Duet directory over to
VA's directory.

4. Once the search paths have been scanned, you will find your device listed under the
appropriate device heading in VA. It is now available for use in your VA project.
(FIG. 26)

Because not all users install Café Duet to the same computer, or
because the output JAR files may go to a different directory, having
the correct directory path is essential. If you are unable to find the
correct module directory using the Device Database Manager, you
may have to make a manual search for the directory containing your
module JAR file and then copy the file directly to the correct directory.

FIG. 26 VisualArchitect Devices directory
 Café Duet v1.8 - User’s Guide

Creating a Sample Module
Creating a Sample Module
This section describes the creation of a sample module, from initial wizard development to
the final NetLinx compile process.

For more detailed information, refer to the Building JAVA Device Modules Using Café
Duet course provided by AMX University. This three-day course for programmers uses
the AMX Café Duet software to develop communication modules for third party devices.
J2ME and OSGI are discussed in detail along with AMX JAVA Classes, methods, and
components.

Obtaining Pre-configured AMX Duet Modules
AMX provides pre-configured Duet modules through the InConcert section of the
amx.com website. These modules allow you to begin using the files in NetLinx Studio.

1. Log into the www.amx.com website.

2. Navigate to the InConcert Resource Center section of the website by clicking on the
InConcert button from the AMX navigation menu.

3. Read the License Agreement, and click the I Accept button. If you select I Do Not
Accept, you are directed to a page indicating the proprietary nature of the
information.

4. Enter the name of the manufacturer in the Manufacturer field.

5. Click the Search button. Look for the Duet Module Icon (FIG. 27) to appear within
the AMX Systems column. This indicates there is a pre-configured Duet Module for
this device.

6. In the Control Method column, select the corresponding control method for your
target device. This action launches the Device Model Details dialog.

7. Click on the Downloads link (from the left frame) to populate the right frame with all
of the available download files for that device’s control method.

8. Click on the ZIP file to download the necessary files to your computer.

9. Open the ZIP file and locate the JAR file (for a Cafe Duet project).

10. Download/extract the contents into either of these locations:

z In the working directory (within Studio).

z Linked to the Workspace under the available Module folder (within Studio).

FIG. 27 Module Legends
43Café Duet v1.8 - User’s Guide

Creating a Sample Module

44
z In the central Café Duet module directory, as defined in Settings > Preferences
(Application Preferences section on page 9).

11. Import the JAR file into NetLinx Studio by using the procedures outlined within the
Using NetLinx Studio to Transfer JAR Files section on page 38.

12. Continue with the procedures outlined within the Using SNAPI and Duet Modules in
NetLinx Studio section on page 51.

Creating a New Duet Module
Step 1 - Run the Module Wizard

1. Double-click the Cafe Duet icon to launch the application. By default, the icon
appears on your desktop.

2. From the Main menu, select File > New > Project to open a series of wizard-based
configuration windows.

3. From within the New Project - Select dialog, choose Duet Module (from the left
window pane) and Duet Module Project (from the right window pane).

4. Name the Project and click the Next button to save the project name and then
continue to the Duet Module Settings dialog.

5. Click the Next button. In most cases, you will skip this dialog that allows for the
addition of resources (which are not strictly necessary).

6. From within the Duet Module Content dialog, fill in the Make and Model of the
controlled device (ex: switcher).

z Information must be entered within the Module-Name, Module-Version,
Device-Make, Device-Model, and Device-Revision fields.

z Refer to the Defining the Module section on page 14 for more detailed
information on these fields.

7. Click Next to save the device information and module settings, and continue to the
Duet Module Devices dialog.

8. Specify a category for the device within the device’s package name. This field can
hold up to 255 alpha-numeric characters. Text is required within this field.

z Package Name: Enter the device’s package name (up to 255 alpha-numeric
characters). This package name should be unique to the module. Text is
required within this field.
For example: com.amx.switcher.dr1_0_0 (where you are controlling an AMX
switcher). By choosing a switcher, this provides the expected functionality for
your device.

z Class Name: the class name for this field is defaulted to a combination of the
Device-Make and Device-Model. The Class Name should start with an
Café Duet v1.8 - User’s Guide

Creating a Sample Module
uppercase letter (up to 255 alpha-numeric characters). Text is required within
this field.
Example is: AmxSwitcher.

z Available Devices: a list of available Duet devices (com.amx.duet.devicesdk)
that can be selected and then used to generate a new device class. This list of
available devices is pulled from the DeviceSDK.

9. Click Next to save any changes and continue to the Override/Implement Methods
dialog (FIG. 28).

10. Choose which methods you wish to override. These are the standard methods for the
device type. The SNAPI router calls these methods to allow NetLinx applications to
interact with the Java module.

ICSP information (such as channels, levels, strings, and commands) that conforms to
the SNAPI, invoke the appropriate methods. Check all the methods you wish to use
with your device.

At the very least, the Switcher will need a switchInputToOutput()method to
operate. There are three methods of this name, each with a different signature. It's a
good idea to use all of them, to ensure cross-compatibility with other switchers. If
you utilize all the methods, you will have a much better chance at being able to
change switcher models without changing the main body of the application code.

Only override a method if you do not want the default base-class
behavior. If a base-class method is empty (i.e. has no
implementation), it is advised not to call it from your source code
since it might have an implementation and behavior in the future that
is inconsistent with your code.

FIG. 28 Override/Implement Methods dialog
45Café Duet v1.8 - User’s Guide

Creating a Sample Module

46
11. Under the Module portion of the tree (FIG. 28), it's a good idea to choose
handleAdvancedEvent().

z HandleAdvancedEvent is called when the SNAPI router is not able to
interpret the channel, level, or command sent by the application code.

z Additionally, passthru()is advisable for a similar reason. passthru()is
called to send a device-specific protocol string directly to the device.
Therefore, passthru is formatted in the device-specific protocol to allow
device functions that have not been supported by an advanced or basic
function.

z HandleAdvancedEvent is for functions that are implemented by the module,
but are not supported by SNAPI.

12. Click Finish to save your wizard configurations, set your build paths, and create your
project.

13. Click Yes to confirm the use of the Duet Perspective (project default). You can also
select not to receive this message in the future.

z It is within this perspective that a user can begin creating device specific code.

14. At this point, you should have a Package to explore. In the Package Explorer window
(FIG. 29), expand the package you created (upper-left) to reveal the various .jar files
involved.

z All the device specific code resides in the com.<make>.<model>.<revision>
entry.

z The MakeModel.java (or whatever you chose to rename it - our example uses
AmxSwitcher.java) is your source code file.

z Open it now. For the remaining portion of these procedures, it is assumed this
file is named AmxSwitcher.java.

Step 2 - Adding Necessary Plumbing

The following procedures setup and prepare the module for use:

1. If you expect 2-way communication with your device add Implements
IDataListener to the public class.

z Find the line:
 public class AmxSwitcher extends Switcher {

and change it to:
public class AmxSwitcher extends Switcher implements

IDataListener {

z Café Duet flags this change and responds by stating it needs more information.
Café Duet v1.8 - User’s Guide

Creating a Sample Module
2. Click on the warning icon to begin the resolution process. Doing so causes a list of
options to appear.

3. Double click on import 'com.amx.duet.core.master.netlinx.IDataListener'.

z This adds another import statement to make the code available.

z There is still an unresolved issue. IDataListener needs certain methods to be
implemented.

z Click on the warning icon again and choose to add the implemented method.
The handleDataEvent()method is then added as a result.

4. Next, obtain the NetLinx D:P:S address for the device you are trying to control. This
information is available in at least two ways:

z In the constructor for AmxSwitcher, it is passed as the parameter nd. At this
point, just store the value in a field declared as a NetLinxDevice.

z At any point, the value can be obtained with the method call
getNetLinxDevice().

5. Since the main purpose of the module is to talk to one device, it is recommended that
you create a global variable to store this information in.

FIG. 29 Package Explorer view showing created packages

Created Package

Package Explorer
47Café Duet v1.8 - User’s Guide

Creating a Sample Module

48
6. Just under the declaration of the class, you can create your global variable (in this
example: dvActual) like this:

public class AmxSwitcher extends Switcher implements
IDataListener {
 NetLinxDevice dvActual;

…then in the constructor:

public AmxSwitcher(BundleContext bctxt, NetLinxDevice nd,
Properties props) {
 dvActual = nd;

z Now dvActual has the handle for the specific interface your device is connected
to.

z The code is generated in the following order (step 7 then step 8).

7. You need to make the Duet module inform the NetLinx Master that it would like to
receive incoming strings (from the controlled device).

z In the method doAddNetLinxDeviceListeners(), add the following line:

protected void doAddNetLinxDeviceListeners() {

 dvActual.addDataListener(this);

}

8. Finally, to also ensure that your device will function alongside the NetLinx
Interpreter, also add the following text:

z If you want the NetLinxDevice initialized, in the method
doNetLinxDeviceInitialization(), add the following line:

protected boolean doNetLinxDeviceInitialization()

{

 return true;

}

//to receive INFO log messages

this.setDebugState(INFO);
Café Duet v1.8 - User’s Guide

Creating a Sample Module
Step 3 - Adding the Device Specific Code

In the case of the Switcher component, the most central method to its operation is the
switchInputToOutput() method. Inside this method is where you need to write the
code that takes the parameters which will be passed into it, and then convert it to a
message compatible with the actual switcher.

public void switchInputToOutput (SwitchLevel sl,int
input,int output) {

 // device specific code goes here.

}

1. Communicate with the attached device, by utilizing the methods that are part of the
NetLinxDevice object (in our case: dvActual), such as:

public void switchInputToOutput (SwitchLevel sl,int
input,int output) {

 // device specific code goes here.

 dvActual.sendString("I am sending this string out the
com port")

}

z Lastly, you should deal with the strings coming back from the device. Since
IDataListener is implemented, and doAddNetLinxDeviceListeners()
contains dvActual.addDataListener(this), you will receive returned
information in handleDataEvent(Event arg0).

2. Create a place to store the incoming information by going beneath your public class
declaration (public class AmxSwitcher extends Switcher implements iDataListener)
and creating a global variable like this:

public class AmxSwitcher extends Switcher implements
iDataListener {

NetLinxDevice dvActual;

StringBuffer incoming = new StringBuffer();

There are three versions of the switch method; each with a different
method signature. The appropriate method is called based on the
parameters sent.
For the purpose of this discussion, we'll continue with the simplest
form: one input to one output (as seen below).

It is recommended to initialize the size of the StringBuffer at the
time of creation. For example: StringBuffer incoming = new
StringBuffer(10).This example initializes the initial capacity of
the String Buffer to a value of 10 characters.
49Café Duet v1.8 - User’s Guide

Creating a Sample Module

50
3. Create the 'receive' portion of the code by going to handleDataEvent(Event
arg0) and adding the following text:

public void handleDataEvent(Event arg0) {
 switch(arg0.type){
 case Event.E_STRING: {
 incoming.append(new String((byte[])
arg0.dataValue));
 }
 }
}

z Now incoming contains the messages received from the controlled device.

4. Use the methods contained in String and StringBuffer to parse the information
and decode its meaning.

Step 4 - Compile and Pack Process

Before the Café Duet created module files can be used by NetLinx Studio, they must first
be properly exported:

1. Resolve any errors and warnings (refer to the Using the Extract Interface
dialog section on page 32).

2. Compile the module stub (Compiling the Module Stub section on page 33).

3. Pack the module files to a JAR file (Packing a Module section on page 33).

Step 5 - Regenerating Project files (if a change is made)

Making an alteration to the Duet Manifest Editor’s Device-Revision field information can
affect several aspects of your current project. An example of this need can be seen if you
have to change your switcher’s firmware from 1.0.1 to 1.0.2 because of a new firmware
release. This is not limited only to the Device-Revision field but is also a way of
"synching-up" the information found within the Manifest Editor fields and the data located
within the NetLinx Stub file.

The following steps outline a sample regeneration based on a change to a device’s
firmware revision:

1. Open this editor by double-clicking on the manifest.duetmf file from the META-INF
folder in the Package Explorer view.

2. Update the firmware version information (given in a X.X.X format) within the
Device-Revision field of the Module Manifest Items section.

StringBuffers are preferred/recommended over Strings due to
the extra overhead associated with Strings which StringBuffers
do not have. A workaround to this issue is to use
StringBuffer.toString() which is equivalent to a String.
Café Duet v1.8 - User’s Guide

Creating a Sample Module
3. Regenerate the project by either clicking the Regenerate icon from below the Main
menu or right-click anywhere within the Package Explorer view and from the
on-screen context-sensitive menu select Duet > Regenerate.

Using SNAPI and Duet Modules in NetLinx
Studio
Step 1 - Using SNAPI and NetLinx Studio

Begin by importing the JAR file into NetLinx Studio (refer to the Using NetLinx Studio to
Transfer JAR Files section on page 38 for more information). Proceed with the following
steps:

1. Declare the actual port in DEFINE_DEVICE.

2. Declare a Duet virtual device (41000 - 42000).

3. Add the DEFINE_MODULE line after DEFINE_START.

4. Call the methods you have programmed in your JAVA module by consulting the
SNAPI router documentation.

5. Look up the method you wish to invoke. For example:

switchInputToOutput(sl, input, output)

is activated by:

SEND_COMMAND
vdvDuetVirtualDevice,"'CL<sl>I<input>O<output>'"

z For detailed information about the SNAPI, refer to the SNAPI Language
Reference help file in the NetLinx Studio v2.4 application.

Step 2 - The Compile Process - NetLinx Studio preparation

1. Import the JAR file for use within NetLinx Studio v2.4 (Using NetLinx Studio to
Transfer JAR Files section on page 38).

2. Verify the Café Duet module is either:

z In the working directory.

z Linked to the Workspace under the appropriate module heading.

z In the central module directory, as defined in Settings > Preferences
(Application Preferences section on page 9).

The SNAPI router is the translation between the NetLinx interpreter
and the Java Virtual Machine.
51Café Duet v1.8 - User’s Guide

Creating a Sample Module

52
3. Prepare the project for download to a Master by confirming that all necessary JAR
files have been added to the Module folder within the active Workspace. Refer to the
Using NetLinx Studio to Transfer JAR Files section on page 38 for more information.

z If you use a 3-file format (UI.AXS, Main.AXS, or Comm.JAR), then ONLY
the Build Active System and Build Workspace options are functional.

z The Build > Compile option is only available if the actual AXS file is open.

z If you have linked it only to your Workspace, use the Build > ActiveSystem
option.

Step 3 - Sending the file to the NetLinx Master

1. From the Main menu, navigate to Build > Active System. This begins the process of
compiling the NetLinx project. Verify the application has successfully compiled the
project.

2. Once the NetLinx program has successfully compiled (0 errors 0 warnings), from the
main menu, navigate to Tools > File Transfer to open the File Transfer dialog.

z If there are leftover files from a previous transfer, click the Remove All button.

3. Press Add to add files for transfer to the target Master. This process opens up a Select
Files for File Transfer dialog.

4. From within the Current Workspace tab navigate down the Projects hierarchy until
you find the tkn file specific to your NetLinx Studio project.

5. Place a checkmark next to the tkn file specific to this active project. This should
place a checkmark alongside all options corresponding to this project.

6. Press OK to accept your selection and return to the main File Transfer dialog.

7. Press Send to begin the upload process to the target Master. You should see several
files pending, including a few .jar files.

To download a file to a secure Master, the security information must
first be pre-configured within the Master Comm Settings dialog by
requiring authentication of a Username and Password.
If you do not have download rights to the secured Master, you will
receive an “Authentication error” message.
Café Duet v1.8 - User’s Guide

Using Duet Remote Debug
Using Duet Remote Debug

Default Settings and Initial Preferences
Default Compiler Compliance

Select Windows > Preferences… > [+] Java > [+] Compiler to access the Java Compiler
options (FIG. 30).

In the JDK Compliance preferences group box:

z The default ‘Compiler compliance level’ (dropdown) setting is 1.4.

z The default ‘Generated .class files compatibility’ (dropdown) setting is 1.2.

z The default ‘Source compatibility’ (dropdown) setting is 1.3.

z If the Use default Compliance Settings option is checked (default setting), its
sub-options are disabled.

Within a Café Duet session, you may change default preferences. However, between
session restarts, Café Duet will revert back to these recommended settings.

FIG. 30 Java Compiler Options
53Café Duet v1.8 - User’s Guide

Using Duet Remote Debug

54
Default Duet Perspective Behavior

The default behavior for the Eclipse user interface when debugging is to remain in the
current perspective until a debug event occurs (e.g.: watch point or a break point is
encountered by the AMX Master). However, for Café Duet, launching a debug session can
take 30 to 90 seconds depending on your situation. The AMX Master is rebooted into
debug mode which requires a connection handshake before the Master can continue
loading the JVM.

Instead of waiting a lengthy time for a debug event to occur, Café Duet initially sets the
default preference to prompt you (at Debug Launch time) to switch to the Debug
Perspective.

This allows you to switch from Duet Perspective to the Debug Perspective so its Java
Editor view and Debug Controls views are readily used to set up debug events, even before
the Remote Debug session proceeds from the AMX reboot and handshake.

This setting can be overridden by the user with other preference choices:

Select Window > Preferences… > [+] Run/Debug > Launching to access the
Launching options (FIG. 31).

When a Duet Module is production-ready, a final generation of slightly
smaller class files may be suggested in a memory constrained
environment. Uncheck the 'Classfile Generation' checkbox options
that end in "(used by the debugger)" to conserve class/jar space.
Café Duet v1.8 - User’s Guide

Using Duet Remote Debug
The Open the associated perspective when launching, and Launch in debug mode
when workspace contains breakpoints groups have the following (radio-button) options:

z Always (immediately switch perspectives),

z Never (Eclipse default),

z Prompt (Café Duet default)

Default Progress View - When Launching a Duet Remote Debug Session

The default behavior for viewing the Duet Remote Debug ‘Launching progress’ is
unobtrusive, by design.

After a few sessions, you will likely be familiar with the timing required by your specific
NetLinx Master to reboot, and won't necessarily require feedback about the debug launch
progress each time.

As such, Café Duet provides optional controls that allow you to double-click the bottom-
right progress mini-bar animation (FIG. 32) to expand the Launching progress (FIG. 33)
view shortly after launching a Duet Remote Debug session.

FIG. 31 Launching Options

FIG. 32 Progress Mini-bar Animation
55Café Duet v1.8 - User’s Guide

Using Duet Remote Debug

56
z The expanded Launching Progress view for Duet Remote Debug is non-modal
(by design). Since Duet Remote Debug launch processing may take as much as
120 seconds to complete depending on situational factors, a ‘modal’ Launching
Progress pop-up is not necessarily desirable. Further, this allows you to use
launch time to setup Café Duet debug events that will activate debug on your
latest code changes.

z The expanded Launching Progress view is also not a pop-up by default, but is
attached to a section so it does not visually intrude on the editor view for
example, where you may be setting up debug events (e.g.: Breakpoints and/or
Watchpoints).

z It can be detached: If you prefer ‘pop-up’ behavior for subsequent sessions,
right-click on the Progress tab and select Detached. This alters the default
behavior of the Launching Progress view as a pop-up, but stays ‘non-modal’.

z To return to the Duet Perspective, select Duet instead.

FIG. 33 Launching progress view

The Perspective icon for the Debug Perspective is the same icon
used for the Debug Launch action. The user should be careful to
ensure the desired control is selected.
Café Duet v1.8 - User’s Guide

Using Duet Remote Debug
Default Launch Timeout

Select Windows > Preferences… > [+] Java > [+] Debug to access the Java Debug
options (FIG. 34).

In the Communication preferences group box:

z The default ‘Launch timeout (ms)’ setting is 60000 ms (60 seconds)

Within a Café Duet session, the user may change default preferences. Once the user is
familiar with their AMX Master timings, the initial setting for ‘Launch Timeout (ms)
value can be adjusted to suit.

FIG. 34 Java Debug Options
57Café Duet v1.8 - User’s Guide

Using Duet Remote Debug

58
Accessing the Debug Perspective
The Debug perspective contains elements specific to Duet Remote Debug operations. To
access this perspective:

1. Click the Open Perspective toolbar button and select Other from the
drop-down to open the Select Perspective dialog.

2. Select Debug and click OK.

See the Debug Perspective section on page 21 for a description of the elements in the
Debug perspective.

Using Duet Remote Debug
The ‘Duet Remote Debug’ option allows you to enable AMX Master remote debug. Use
this feature to debug Duet Modules.

Debugging Duet Modules entails three main operations:

1. Preparing a Duet Module for Debugging section on page 60

2. Setting Breakpoints and Watchpoints section on page 62

3. Debugging a Duet Module section on page 61

Key initial concepts

z The Duet Java Virtual Machine (JVM) can communicate and control the new,
upgraded JVM on the NetLinx Controller, aka AMX Master

z Duet debug boots the AMX Master so its JVM restarts from regular mode into
debug mode. The Duet user configures this debug 'launch' to the AMX Master
IP. Reboot of the AMX Master, and Duet handshake to establish JVM debug
coordination control, may nominally require a 30-60 second wait to set up.

z While the AMX Master JVM is executing, user controls are not available. Duet
debug provides user controls to break (suspend) execution of Java code, and
step through Java source code. Only when the AMX Master execution is
suspended can the Duet user inspect
and/or modify variable values, and add or remove breakpoints, on-the-fly.

z The Duet Module Java source must match the AMX Master Module Java
source, so NetLinx Studio is used to transfer files between Duet debug sessions

z Any changes to a Java source from a Duet debug session requires a debug
restart as follows: 1) Duet regenerate and repack, 2) NetLinx Studio sys build
and file transfer (with reboot disabled), 3) then Duet debug to restart. This
ensures the AMX Master synchs up to the Duet Module updates.
Café Duet v1.8 - User’s Guide

Using Duet Remote Debug
Duet Remote Debug Primer

z The Debug feature is provided to Café Duet programmers during development
of a Duet Module on the AMX Master (aka NetLinx Integrated Controller).
Remote debug is not intended for Production use, or for relaying Diagnostic
information. Rather, Debug allows the programmer to step through source code
deployed to an AMX Master for development testing. As such, Debug is most
useful in dynamically testing a programmer's own source code. Source code,
for which the programmer has no access, cannot be debugged.

z The NetLinx Studio is required for building the system and transferring the
latest Module bundle and necessary support files to the AMX Master.

z In order for the Café Duet PC to initiate debug control of the AMX Master for
Remote Debug, the AMX Master must be rebooted by Café Duet Remote
Debug launch to place the AMX Master JVM (Java Virtual Machine) into Java
debug mode.

z A 'Launch Configuration' is required for each Module to be debugged remotely.
Nominally, the debug programmer must specify the AMX Master IP Address.
The Launch Configuration is where Debug Action is initiated, and the AMX
Master rebooted. Network connection difficulties may arise in special setups. If
so, follow the steps in the section 'Reboot Sequence Problems in Debug
Launch'.

z While the AMX Master JVM is executing the Duet Module, the Café Duet
JVM can not interfere, so the AMX Master Module needs to be paused by
setting up debug breakpoints at key source code lines expected to execute. If no
breakpoints are encountered, no debug coordination or Café Duet user control
is established.

z Timing sensitive AMX Master Module operations will not behave correctly
when suspended. Care must be taken not to break execution during time-
critical operations. Logging is suggested instead, to prevent misinterpretation
of timing issues as misbehaved Module code.

z Debug breakpoints pause (suspend) execution of a Module program remotely
running on the AMX Master. When the AMX Master JVM is suspended, the
Café Duet JVM can coordinate with the AMX Master JVM for Module
program controls (e.g.: remote debug JVM-to-JVM coordination of Java stack
and variables updated up to the point of execution). A programmer can
dynamically step through source code logic and inspect or even change
memory variables dynamically to control and verify expected results, find any
unexpected use cases, and/or understand any unforeseen side-effects or
sequences.

z Dynamic breakpoint setting and dynamic variable value modifications are
possible. During a debug session, the user can realize that additional
breakpoints are needed to test unforeseen or additional test cases. Remote
59Café Duet v1.8 - User’s Guide

Using Duet Remote Debug

60
debug can support this dynamic model to profile the actual code behavior on
the AMX Master.

z However, actual source code changes on the Café Duet PC would disconnect a
debug session, requiring a transfer of those changes to the AMX Master for
reboot. This ensures that the Café Duet source code under development
matches line-for-line with the AMX Master Module under remote debug.

Note: For more information, On-line help is available to learn more about industry-
standard debug controls available in Café Duet. Go to Help > Help Contents and open the
"Java Developers Guide" and refer to "Concepts" > "Local debugging", "Remote
debugging", "Breakpoints", etc...

Preparing a Duet Module for Debugging
1. Select Duet > Regenerate (or click the toolbar button) to Regenerate the

active project.

2. Select Duet > Pack Module, (or click the toolbar button) to Pack (or Quick
Pack) the project.

3. In NetLinx Studio 2, select Build > Build Active System to compile the

project. This is required so that the TKN (that will be transferred to the target

NetLinx Master) will include the new JAR from the previous Duet ‘Pack

Module’ (or Quick Pack) step.

4. In NetLinx Studio 2, select Tools > File Transfer to open the File Transfer

dialog, and transfer the TKN to the target Master.

z Uncheck the Reboot option (indicated by checkboxes in the Reboot
column of the Files To Send table). The reboot option is selected by
default, but in this case, Duet Remote Debug will reboot the Master so
it is not necessary.

z Verify that NetLinx Studio 2 has completed the download of all system
files to the target Master (indicated in the File Transfer Status tab of the
Output Display Window).

Note: For more information, On-line help is available to learn more about

industry-standard debug controls available in Café Duet. Go to Help > Help

Contents and open the "Java Developers Guide" and refer to "Concepts" >

"Local debugging", "Remote debugging", "Breakpoints", etc...
Café Duet v1.8 - User’s Guide

Using Duet Remote Debug
Debugging a Duet Module
1. Select Run > Debug… to access the Debug dialog (FIG. 35), to select a Debug

Launch Configuration.

Alternatively, select Debug… from the Debug drop-down in the toolbar.

Note: After initial configuration, you can simply click the Debug icon to run
subsequent debug sessions of the last launch (as the default behavior).

2. In the Configurations list, double-click Duet Remote Debug (or highlight Duet
Remote Debug and press New) to create a configuration.

A new configuration under Duet Remote Debug is created, with the Name and
Project fields indicating the active Module.

3. Enter the IP Address (or domain name) for the target NetLinx Master in the Master
IP field.

Note: Optionally, a specific IP Port address can also be entered (if IP port 8000 is already
assigned or in use, for example).

4. Press the Debug button.

z There are several possible Duet Remote Debug Launch Configuration error
messages.

z Debug connection progress is indicated by a status bar in the bottom right
corner of the Duet application window. Double-click this status bar to access
the Progress view tab.

z There is a 30-60 second wait for the Master to reboot specifically for debug
connectivity, so please be patient.

FIG. 35 Duet Debug Launch Configuration dialog box
61Café Duet v1.8 - User’s Guide

Using Duet Remote Debug

62
z If a connection handshake between Café Duet and the Master JVM is not
established in a timely manner, the Duet debug launch attempt will abort after
60 seconds. Likewise the AMX Master in debug mode will not continue JVM
boot-up until a debug handshake occurs. The AMX Master will time out after
about 100 seconds and reboots to its normal mode of operations as a debug
mode failsafe.

z NetLinx Masters have custom configurations and vary in response times (note
your Master’s timings).

z Select Window > Open Perspective… (or click the toolbar button) to ‘Debug’
while debug waits to reconnect (otherwise, Eclipse prompts for ‘Debug’
Perspective when a debug event occurs, eg: a breakpoint or watchpoint).

Note: For more information, On-line help is available to learn more about industry-
standard debug controls available in Café Duet. Go to Help > Help Contents and open the
"Java Developers Guide" and refer to "Concepts" > "Local debugging", "Remote
debugging", "Breakpoints", etc...

Setting Breakpoints and Watchpoints
In Café Duet, you can set Breakpoints and/or Watchpoints at points in your Duet code that
you intend to inspect during the debug operation.

z A code Breakpoint suspends execution of the Duet Module, so that you can
dynamically inspect or change variables, and step through code execution.

z Likewise, a variable Watchpoint suspends execution anytime the variable is
changed, giving you step controls (see below).

Breakpoints and watchpoints are added to a line by double-clicking its
left-margin gutter.

Once a breakpoint or watchpoint is encountered, execution is suspended, and you can use
the following controls:

z F5 = Step Into

z F6 = Step Over

z F7 = Step Return

z F8 = Resume

Note: These controls are also available as toolbar buttons:

A green highlight depicts the next line of Java that debug will execute. The default Debug
Perspective presents a Call Stack, a Control View for Watchpoint(variable)/
Breakpoint(line)/Expression(conditional) settings, the Java Editor view, and current class
Outline tree.
Café Duet v1.8 - User’s Guide

Using Duet Remote Debug
Note: For more information, On-line help is available to learn more about industry-
standard debug controls available in Café Duet. Go to Help > Help Contents and open the
"Java Developers Guide" and refer to "Concepts" > "Local debugging", "Remote
debugging", "Breakpoints", etc...

Changing Variable Values During a Duet Debug
Session
Variable values can be dynamically changed: Hover the mouse cursor over variable values,
and right-click a variable for user-controls.

Controls include dynamic enabling/disabling of debug breakpoints/watchpoints, and
selecting stack lines to view the calling sequence.

Note: You can change Java code during a debug session, but saving added/deleted lines
will defeat ‘line-based’ debugging capabilities. As such, Java code ‘change saves’/
transfers during debug are not allowed. Code saves will invoke a Debug Disconnect
prompt.

Making Incremental Code Changes and Starting
a New Debug Session
When finished with a debug session:

1. Click the Disconnect toolbar button

2. To clean up the Call Stack view, click the Remove toolbar button.

3. Complete any Java code changes found from debugging

4. Regenerate and Repack the project.

5. In NetLinx Studio 2, build (compile) and transfer the project files to the target
NetLinx Master.

Note: To restart the last debug session, press the ‘Debug’ icon, or change settings first if
needed (e.g.: Debug Port address).

Finishing a Duet Debug Session
When you have verified that the Module changes are complete, return the Master to
regular operating mode (non-debug mode) by highlighting the uppermost stack-line (beg:
Duet icon, "[Duet Remote Debug]"), then pressing the AMX Boot icon to reset the AMX
Master from debug controls. This function has the equivalent effect as the NetLinx
Studio’s Tools > Reboot the Master Controller… command.

Note: For more information, On-line help is available to learn more about industry-
standard debug controls available in Café Duet. Go to Help > Help Contents and open the
63Café Duet v1.8 - User’s Guide

Using Duet Remote Debug

64
"Java Developers Guide" and refer to "Concepts" > "Local debugging", "Remote
debugging", "Breakpoints", etc...

Duet Remote Debug Launch Configuration Error
Messages

z 'Master IP' is not valid - Indicates that the ‘Master IP’ edit field is default
(0.0.0.0), or a localhost loopback address.

z Valid 'Port address' range is 1024 to 65535 - Indicates that the 'IP Port
address' edit field is not in valid range.

z 'Port address' is not valid for debugging - Indicates that the 'IP Port address'
edit field is an AMX reserved port (eg: 1319).

z 'Port address' value of nnnn is not valid - Indicates that the 'IP Port address'
edit field “base implementation” validity check fails.

Reboot Sequence Problems

In the event of any reboot sequencing problems, it is recommended that you wait 2
minutes before retrying. Since the launch timeouts are around 90 seconds, waiting 120
seconds would ensure that any mistiming is past.

MISTIMING EXAMPLE

In the event that you launch another Duet Remote Debug session, not realizing that a
launch was already underway, you might re-launch if you are not yet familiar with the
sequence and optional controls. Depending on the timing, the AMX Master may still be
rebooting and be unresponsive to the ‘reboot debug’ command. If you attempt to re-launch
again a vicious cycle is started.

Wait at least 2 minutes to ripple out any timeouts before retrying.

Error Pop-up dialog boxes are always modal, and must be dismissed before recovering
from the 2 minute timeout.

Otherwise, if the AMX Master continues to be unresponsive to debug launch attempts,
version checking may be required.

FIG. 36 Reboot Progress Mistiming Example
Café Duet v1.8 - User’s Guide

Using Duet Remote Debug
PRE-DATED FIRMWARE VERSION

A prior version of Production AMX Master Firmware image may still be in use that does
not respond to the host PC debug requests. Although prior versions of AMX Firmware
will ‘reboot’ during the launch sequence, it will not handshake or reboot into debug mode.
For good measure, restart Café Duet.

REMOTE DEBUG FAILURE TO LAUNCH or FAILED TO CONNECT TO

"MASTER IP"

If the AMX Master is not rebooting visually from a Duet Remote Debug launch, recycle
its power, wait 2 minutes, and retry. Further, disable any NetLinx Controller
Authentication features (particularly Telnet security) on the AMX Master. Unlike
diagnostics capabilities, Program debug capabilities are provided for device module
development, well before production deployment where authentication needs are enabled.

DEBUG HANDSHAKE TIMED OUT

If the above troubleshooting still results in a handshake timeout error, the Duet PC's
network configuration may be missing a 'Default Gateway' which is required for the AMX
Master handshake with the Duet PC to complete after reboot.

Open a Command Prompt, and enter the command 'ipconfig'. If the 'Default Gateway'
entry is blank, a value is required for handshake, even if a private network configuration
does not require it. Contact your Local Network Administrator if needed.

PRE-DATED FIRMWARE VERSION

The handshake process may fail if Duet auto-selected the wrong PC IP address. This issue
is encountered only infrequently.

Basically, when Duet issues a reboot to the AMX Master into JVM Debug mode, Duet
passes the AMX Master the Duet PC's own IP Address with which to handshake after
reboot, allowing the AMX Master JVM to acknowledge the Duet PC JVM to coordinate
remote debugging.

However, PC configurations may have multiple Network Interface Cards (NICs) such as
PCMCIA or USB LAN cards, etc. Consequently, the PC may have multiple, valid IP
Addresses. Duet makes the best effort to auto-select the most unique IP Address in the PC,
but it is possible to choose the unintended IP Address from a list of 'good' choices.

As such, an Environment override is provided for the debug user to specify which Duet PC
IP address to pass to the AMX Master for handshaking. In the Duet Remote Debug
Launch Configuration, select the Environment Tab and press the [New…] button
(FIG. 37).
65Café Duet v1.8 - User’s Guide

Using Duet Remote Debug

66
1. Enter the predefined environment variable Name: to override as 'DUET_PC_IP'.

2. Specify the Duet PC's IP Address Value: for handshaking, e.g.: '192.168.78.61'.

3. Retry the new Duet Remote Debug configuration change with the Debug button.

FIG. 37 New Environment Variable dialog box

Café Duet v1.8 - User’s Guide

Appendix - Metadata
Appendix - Metadata
Device metadata should be associated with a Duet module in order to determine the
context and usage cases for the module. The metadata can be used in conjunction with
AMX's device database in order to help build control system programs automatically.
Below is a table which provides a listing of the available device metadata types and their
specific properties.

Device Metadata
Devices: Property Name: Property Type: Default

Value:

Amplifier: Support-Discrete-Power Boolean false

Audio Conferencer: Num-Speed-Dial-Indexes Integer 0

Num-Dialers Integer 1

Support-Discrete-Power Boolean false

Audio Mixer: Num-Inputs Integer blank

Num-Outputs Integer blank

Audio Processor: Num-Inputs Integer blank

Num-Outputs Integer blank

Support-Discrete-Power Boolean false

Audio Tape: Num-Tape-Desks Integer 1

Record-Capable Boolean true

Support-Discrete-Power Boolean false

Audio Tuner Device: Supported-Bands String FM, AM

Support-Discrete-Power Boolean false

Camera: Support-Discrete-Power Boolean false

Digital Media Decoder: Support-Discrete-Power Boolean false

Digital Media Encoder: Support-Discrete-Power Boolean false

Digital Media Server: Support-Discrete-Power Boolean false

Digital Satellite System: Supported-Bands String TV

Support-Discrete-Power Boolean false

Digital Video Recorder: Supported-Bands String TV

Support-Discrete-Power Boolean false
67Café Duet v1.8 - User’s Guide

Appendix - Metadata

68
Device Metadata (Cont.)
Devices: Property Name: Property Type: Default

Value:

Disc Device: Direct-Disc-Selection Boolean false

Num-Discs Integer 1

Support-Discrete-Power Boolean false

Disc-Device-Type String DVD

Selections include: DVD, CD, Laser Disc, Mini Disc, and
Other Discs.

Document Camera: Support-Discrete-Power Boolean false

HVAC: Num-Thermostats Integer 1

Support-HumidifyDehumidify Boolean false

Keypad: Num-Keypads Integer 1

Num-Button-Per-Keypad Integer blank

Keypad-Addressing-Scheme String (Regular
Expression)

blank

 Example: \\[?(\\d{1,3}[\\.:/]){2,4}+\\d{1,3}\\]?

Support-Input-From-Keypad Boolean false

Support-Output-To-Keypad Boolean false

Light: Num-Lights Integer 1

Light-Addressing-Scheme String (Regular
Expression)

blank

 Example: \\[?(\\d{1,3}[\\.:/]){2,4}+\\d{1,3}\\]?

Num-Keypads Integer 0

Num-Button-Per-Keypad Integer blank

Preset-Address-Format String blank

Support-Input-From-Keypad Boolean false

Support-Output-To-Keypad Boolean false

Monitor: Support-PIP Boolean false

Has-PIP-Tuner Boolean false

Support-Multiple-Screens Boolean false

Support-Discrete-Power Boolean false

Motor: Open-Text String Open

Close-Text String Closed

Multi-Window: N/A

Pool Spa: Support-Dual-Equipment Boolean false

Num-Pool-Auxiliary-Relays Integer 0
 Café Duet v1.8 - User’s Guide

Appendix - Metadata
Device Metadata (Cont.)
Devices: Property Name: Property Type: Default

Value:

Pre Amp Surround
 Sound Processor:

Support-Discrete-Power Boolean false

Receiver: Supported-Bands String FM, AM

Support-Discrete-Power Boolean false

Security System: Num-Partitions Integer 1

Support-Points-Detail Boolean false

Sensor Device: N/A

Settop Box: Supported-Bands String TV

Support-Discrete-Power Boolean false

Slide Projector: Support-Discrete-Power Boolean false

Switcher: Num-Inputs Integer blank

Num-Outputs Integer blank

Support-Breakaway true

Support-Gain Boolean false

Support-Volume Boolean false

Text Keypad: N/A

TV: Supported-Bands String TV

Support-PIP Boolean false

Has-PIP-Tuner Boolean false

Support-Multiple-Screens Boolean false

Support-Discrete-Power Boolean false

Utility: N/A

VCR: Supported-Bands String TV

Support-Discrete-Power Boolean false

Video Conferencer: IP-Dialing-Capable Boolean false

Phoneline-Dialing-Capable Boolean false

Num-Speed-Dial-Indexes Integer 0

Farend-Camera-Control-
Available

Boolean false

Farend-Source-Select-Avail-
able

Boolean false

Support-Multipoint Boolean false

Support-Discrete-Power Boolean false
69Café Duet v1.8 - User’s Guide

Appendix - Metadata

70
Device Metadata (Cont.)
Devices: Property Name: Property Type: Default

Value:

Video Processor: N/A

Video Projector: Support-Discrete-Power Boolean false

Video Wall: Support-Discrete-Power Boolean false

Volume Controller: N/A

Weather: Num-Forecast-Days Integer blank
 Café Duet v1.8 - User’s Guide

71 Café Duet v1.8 - User’s Guide

3000 Re

A
M

X
 r

es
er

ve
s

th
e

rig
ht

 t
o

 a
lte

r
sp

ec
ifi

ca
tio

ns
 w

it
ho

ut
 n

o
tic

e
at

 a
ny

 t
im

e.

9
3
-0

5
0
6

 R

E
V

:
E

03
3-

00
4-

28
43

 1
0/

06
 ©

20
06

 A
M

X
. A

ll
rig

ht
s

re
se

rv
ed

. A
M

X
 a

nd
 t

he
 A

M
X

 lo
g

o
 a

re
 r

eg
is

te
re

d
 t

ra
d

em
ar

ks
 o

f A
M

X
.
search Drive, Richardson, TX 75082 USA • 800.222.0193 • 469.624.8000 • 469-624-7153 fax • 800.932.6993 technical support •
www.amx.com

It’s Your World - Take Control™

	Café Duet™ - User’s Guide
	Introduction
	What’s New in this Release
	Café Duet version 1.8 features
	Duet SDK features supported in this release

	Café Duet Minimum System Requirements
	Supported operating systems
	PC requirements

	NetLinx Master Requirements
	Installing NetLinx Studio
	Installing Café Duet
	Launching Café Duet

	Overview of the Duet Plug-in
	Application Preferences
	Setting up the Café Duet Preferences
	Setting up the Manifest Editor Preferences

	Creating a Duet Module Project
	Defining the Module
	Generating a new device class
	Overriding or Implementing Methods

	Duet Perspective
	Debug Perspective
	Accessing the Debug Perspective
	Creating your own perspective

	Duet Manifest Editor
	Component Editor
	Procedures for using the Extract Interface dialog
	Using the Extract Interface dialog

	Creating NetLinx-compliant Java Files
	Compiling the Module Stub
	Packing a Module
	Quick Packing the Module

	Regenerating the Project files
	Using NetLinx Studio to Transfer JAR Files
	Downloading the Project Files to a Target Master
	Using AMX WebUpdate to Update the Plug-in
	Importing a Module into VisualArchitect

	Creating a Sample Module
	Obtaining Pre-configured AMX Duet Modules
	Creating a New Duet Module
	Step 1 - Run the Module Wizard
	Step 2 - Adding Necessary Plumbing
	Step 3 - Adding the Device Specific Code
	Step 4 - Compile and Pack Process
	Step 5 - Regenerating Project files (if a change is made)

	Using SNAPI and Duet Modules in NetLinx Studio
	Step 1 - Using SNAPI and NetLinx Studio
	Step 2 - The Compile Process - NetLinx Studio preparation
	Step 3 - Sending the file to the NetLinx Master

	Using Duet Remote Debug
	Default Settings and Initial Preferences
	Default Compiler Compliance
	Default Duet Perspective Behavior
	Default Progress View - When Launching a Duet Remote Debug Session
	Default Launch Timeout

	Accessing the Debug Perspective
	Using Duet Remote Debug
	Key initial concepts
	Duet Remote Debug Primer

	Preparing a Duet Module for Debugging
	Debugging a Duet Module
	Setting Breakpoints and Watchpoints
	Changing Variable Values During a Duet Debug Session
	Making Incremental Code Changes and Starting a New Debug Session
	Finishing a Duet Debug Session
	Duet Remote Debug Launch Configuration Error Messages
	Reboot Sequence Problems

	Appendix - Metadata

