
NetLinx Programmer’s Guide

Enterprise Applications

RMS
Resource Management Suite®

(v3.3 or higher)

Last Revised: 4/13/2010

AMX Software License and Warranty Agreement
• LICENSE GRANT. AMX grants to Licensee the non-exclusive right to use the AMX Software in the manner described in this

License. The AMX Software is licensed, not sold. This license does not grant Licensee the right to create derivative works of the
AMX Software. The AMX Software consists of generally available programming and development software, product documenta-
tion, sample applications, tools and utilities, and miscellaneous technical information. Please refer to the README.TXT file on
the compact disc or download for further information regarding the components of the AMX Software. The AMX Software is sub-
ject to restrictions on distribution described in this License Agreement. AMX Dealer, Distributor, VIP or other AMX authorized
entity shall not, and shall not permit any other person to, disclose, display, loan, publish, transfer (whether by sale, assignment,
exchange, gift, operation of law or otherwise), license, sublicense, copy, or otherwise disseminate the AMX Software. Licensee
may not reverse engineer, decompile, or disassemble the AMX Software.

• ACKNOWLEDGEMENT. You hereby acknowledge that you are an authorized AMX dealer, distributor, VIP or other AMX autho-
rized entity in good standing and have the right to enter into and be bound by the terms of this Agreement.

• INTELLECTUAL PROPERTY. The AMX Software is owned by AMX and is protected by United States copyright laws, patent
laws, international treaty provisions, and/or state of Texas trade secret laws. Licensee may make copies of the AMX Software
solely for backup or archival purposes. Licensee may not copy the written materials accompanying the AMX Software.

• TERMINATION. AMX RESERVES THE RIGHT, IN ITS SOLE DISCRETION, TO TERMINATE THIS LICENSE FOR ANY REA-
SON UPON WRITTEN NOTICE TO LICENSEE. In the event that AMX terminates this License, the Licensee shall return or
destroy all originals and copies of the AMX Software to AMX and certify in writing that all originals and copies have been
returned or destroyed.

• PRE-RELEASE CODE. Portions of the AMX Software may, from time to time, as identified in the AMX Software, include PRE-
RELEASE CODE and such code may not be at the level of performance, compatibility and functionality of the GA code. The
PRE-RELEASE CODE may not operate correctly and may be substantially modified prior to final release or certain features may
not be generally released. AMX is not obligated to make or support any PRE-RELEASE CODE. ALL PRE-RELEASE CODE IS
PROVIDED "AS IS" WITH NO WARRANTIES.

• LIMITED WARRANTY. AMX warrants that the AMX Software (other than pre-release code) will perform substantially in accor-
dance with the accompanying written materials for a period of ninety (90) days from the date of receipt. AMX DISCLAIMS ALL
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH REGARD TO THE AMX SOFTWARE. THIS LIM-
ITED WARRANTY GIVES LICENSEE SPECIFIC LEGAL RIGHTS. Any supplements or updates to the AMX SOFTWARE,
including without limitation, any (if any) service packs or hot fixes provided to Licensee after the expiration of the ninety (90) day
Limited Warranty period are not covered by any warranty or condition, express, implied or statutory.

• LICENSEE REMEDIES. AMX's entire liability and Licensee's exclusive remedy shall be repair or replacement of the AMX Soft-
ware that does not meet AMX's Limited Warranty and which is returned to AMX in accordance with AMX's current return policy.
This Limited Warranty is void if failure of the AMX Software has resulted from accident, abuse, or misapplication. Any replace-
ment AMX Software will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer.
Outside the United States, these remedies may not available. NO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO
EVENT SHALL AMX BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS AMX SOFTWARE, EVEN IF AMX HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES/COUNTRIES DO NOT ALLOW
THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITA-
TION MAY NOT APPLY TO LICENSEE.

• U.S. GOVERNMENT RESTRICTED RIGHTS. The AMX Software is provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph ©(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs ©(1) and (2) of the Commercial Computer Software
Restricted Rights at 48 CFR 52.227-19, as applicable.

• SOFTWARE AND OTHER MATERIALS FROM AMX.COM MAY BE SUBJECT TO EXPORT CONTROL. The United States
Export Control laws prohibit the export of certain technical data and software to certain territories. No software from this Site may
be downloaded or exported (i) into (or to a national or resident of) Cuba, Iraq, Libya, North Korea, Iran, Syria, or any other coun-
try to which the United States has embargoed goods; or (ii) anyone on the United States Treasury Department's list of Specially
Designated Nationals or the U.S. Commerce Department's Table of Deny Orders. AMX does not authorize the downloading or
exporting of any software or technical data from this site to any jurisdiction prohibited by the United States Export Laws.

This Agreement replaces and supersedes all previous AMX Software License Agreements and is governed by the laws of
the State of Texas, and all disputes will be resolved in the courts in Collin County, Texas, USA. For any questions concern-
ing this Agreement, or to contact AMX for any reason, please write: AMX License and Warranty Department, 3000 Research
Drive, Richardson, TX 75082.

Table of Contents
Table of Contents
Overview ..1

System Requirements ... 1

Concepts... 1

Network Configuration ... 1

Device Monitoring Framework.. 2

Device Values.. 3

Parameter Values .. 3

Status Types.. 5

Notification Process .. 5

Alert Messages.. 5

Advise Messages... 5

RFID Device Tracking .. 6

Getting Started ..7

Overview .. 7

Using RMS CodeCrafter.. 7

RMS NetLinx Code Architecture ... 8

Interfacing With the RMS SDK.. 8

Service Mode.. 9

Device Parameter Persistence .. 10

Custom Device Monitoring Programming ..11

Overview .. 11

RMSCommon.axi... 11

RMSDevMonRegisterCallback() ... 11

RMSDevMonSetParamCallback() ... 11

RMS Engine Module ... 12

RMS Device Monitoring Support Modules.. 13

RMSBasicDeviceMod... 13

RMSProjectorMod... 14

RMSTransportMod .. 14

RMSSldProjMod .. 15

Programming .. 15

Control Failure .. 17

Device Information.. 17

Monitoring Source Usage ... 18

Source Select .. 18
iRMS - NetLinx Programmer’s Guide

Table of Contents
Monitoring Many NetLinx-Connected Devices.. 19

RMSNLDeviceMod .. 19

Monitoring A Single NetLinx-Connected Device .. 20

Registering Devices .. 21

Registering Parameters... 21

Parameters .. 23

Setting Parameter Values ... 24

Custom "Scheduling Only" Programming ..27

Overview .. 27

NetLinx Modules ..29

RMSEngineMod Module ... 29

Commands .. 29

Strings ... 36

Channels ... 39

Levels ... 39

Module Definition ... 39

Touch Panel Pages .. 39

RMSRFIDTrackingMod Module ... 40

Commands .. 40

Module Definition ... 40

Touch Panel Pages .. 40

RMSRFIDTrackingMod-Multi Module.. 41

Commands .. 41

Module Definition ... 41

Touch Panel Pages .. 41

RMSUIMod Module... 42

Commands .. 42

Module Definition ... 42

Touch Panel Pages .. 43

Constants .. 44

RMSWelcomeOnlyUIMod Module... 45

Commands .. 45

Module Definition ... 45

Touch Panel Pages .. 46

Constants .. 46

RMSHelpUIMod Module ... 47

Commands .. 47

Module Definition ... 47

Touch Panel Pages .. 47
ii RMS - NetLinx Programmer’s Guide

Table of Contents
RMSNLDeviceMod Module... 48

Commands .. 48

Module Definition ... 48

Touch Panel Pages .. 48

RMSProjectorMod Module ... 49

Commands .. 49

Strings... 49

Channels.. 50

Module Definition ... 50

Touch Panel Pages .. 50

Reporting for Multiple Bulb Projectors (Limited Support) 50

RMSMain.axi File Changes .. 50

RMSProjectorMod Module Changes ... 51

RMSTransportMod Module... 53

Commands .. 53

Strings... 53

Channels.. 54

Module Definition ... 54

Touch Panel Pages .. 54

RMSBasicDeviceMod Module ... 55

Commands .. 55

Strings... 55

Channels.. 56

Module Definition ... 56

Touch Panel Pages .. 56

RMSSldProjMod Module... 56

Commands .. 56

Channels.. 57

Module Definition ... 57

Touch Panel Pages .. 57

RMSSrcUsageMod Module ... 57

Commands .. 57

Channels.. 57

Module Definition ... 58

Touch Panel Pages .. 58

Anterus Duet Module ... 58

Module Definition ... 58
iiiRMS - NetLinx Programmer’s Guide

Table of Contents
i!-ConnectLinx ...59

Overview .. 59

Using i!-ConnectLinx ... 59

Standard Actions .. 61

Action Arguments... 62

Action Persistence and Distribution.. 63

International Issues / Localization ... 63

Programming .. 64

Channels.. 64

Levels .. 64

Commands .. 64

Strings ... 66

Module .. 66

i!-ConnectLinx Standard Function List... 67

Multiple RMS Instances ..71

Overview .. 71

Declare a Dev Array of RMS Engine Instances .. 72

Module Defining ... 72

Stacking and Handling Events... 74

Multi-Instancing RFID Device Tracking in RMS.. 75
iv RMS - NetLinx Programmer’s Guide

Overview
Overview

The Resource Management Suite® products are PC server applications designed to manage rooms and
equipment. The RMS server also monitors equipment in the rooms and sends notifications for room problems
and help requests. The RMS server allows for the logging of room and device use, errors that occur, and offline
events. The RMS server offers a variety of build-in reports for historical and statistical analysis, as well as
device monitoring through a user extensible framework. This framework allows you to customize what devices
should be monitored, the conditions that indicates a problem or fault, and what type of problem or fault this
condition represents. The RMS server generates notifications and routes them to different personnel when a
fault condition occurs, routing such notifications to the appropriate personnel as determined by the notification
configuration.

The RMS Software Development Kit (SDK) is composed of a series of modules that allow users to monitor
equipment errors and usage, view appointments, display welcome images and messages, and view current
appointment details from any NetLinx compatible touch panel. Users can create presets to be executed when a
meeting starts from the actions available through i!-ConnectLinx.

i!-ConnectLinx provides the mechanism to expose actions to the RMS server and to manage action execution
on the NetLinx system. In the RMS web pages users can create control functions which are essentially macro
sequences of i!-ConnectLinx actions. These control function macros can be directly executed or scheduled
from the RMS web pages. i!-ConnectLinx handles these requests and presents it to the NetLinx program for
execution. See the i!-ConnectLinx help file for details on programming i!-ConnectLinx.

System Requirements
The RMS SDK is a set of NetLinx and TPDesign4 files that are included in your control system programs. To
utilize this SDK, you will need the following applications installed:

z NetLinx Studio 2.5 (or later)

z TPDesign4 v2.6 (or later) for G4 panels

Concepts
Network Configuration

The RMS application is a client/server application where the NetLinx system acts as the client and the RMS
application server listens for connections from NetLinx systems. NetLinx and the RMS application server
communicate using TCP/IP sockets. In order to establish communication, each NetLinx system must be able
to resolve and connect to the RMS application server. This can be accomplished with a variety of Network
configurations including local area networks (LAN), wide area networks (WAN), and the Internet.

In order to communicate with RMS, a NetLinx system must have the RMS modules added to its programming.
The RMSEngineMod module includes the core API and communication stack that allows NetLinx to
communicate with the RMS server.

Since each NetLinx system acts as the client, it must be configured to communicate to the RMS server using
the 'SERVER-' command in NetLinx programming. NetLinx can accept either an IP address or a HostName
for the server. NetLinx supports DNS so if you are using a HostName, the HostName must be registered with
the DNS server that NetLinx has been configured to use. The DNS server configuration will be picked up
automatically through DHCP if the DNS servers are registered with the DHCP server. For more information
on configuring DNS servers in NetLinx, see the NetLinx master’s instruction manual.

Optionally, the server IP or host name can be placed in a file called ServerInfo.txt and placed in the RMS
directory of the NetLinx master's file system. If this file is present, the RMS communication module ignores
the SERVER- command and uses the address supplied in the file. Enter the IP address or hostname on a single
line using a text editor and FTP the file to the NetLinx master. If the RMS directory does not exist, you can
create it and place the file in the directory.

By default, NetLinx and the RMS server will communicate using TCP/IP port 3839.
1RMS - NetLinx Programmer’s Guide

Overview
Port 3839 is registered to AMX Resource Management Suite with IANA (http://www.iana.org/assignments/
port-numbers). This can be changed to suit your particular facility but it must be changed in both the RMS
server software and each NetLinx system. In the RMS server, this is accomplished through the Configuration
Wizard. In NetLinx, this is accomplished through the 'SERVER-' command in NetLinx programming.

If using the ServerInfo.txt file, append a ":" and the port number to the server IP address or host name.

MeetingManager 1.0 used port 9090 for communications. If you are upgrading from MeetingManager 1.0, you
may wish to continue to use port 9090. During the upgrade process, you are prompted to change to port 3839
or continue to use port 9090. If you change to port 3839, you need to upgrade all NetLinx systems to use the
modules from the RMS 2.0 SDK. You can use port 9090 with both MeetingManager 1.0 and 2.0 NetLinx
systems.

Once a NetLinx system has been programmed with the RMS modules and the server's IP address or
HostName, the NetLinx system automatically connects to the RMS server.

Device Monitoring Framework

RMS provides device monitoring through a user extensible framework. This framework allows you to
customize what devices are monitored, the conditions that indicate a problem or fault, and what type of
problem or fault this condition represents. RMS generates notifications when a fault condition occurs, as
determined by the notification configuration.

Each room has one or more monitored devices. Each device can be a physical device, such as a video projector,
or a logical device, like the RMS software. However, each monitored device must be associated with a
NetLinx-connected device. In the case of a video projector, this device would be the IR card, Serial Card or IP
Socket used to communicate with the projector. The RMS software is associated with the NetLinx master
itself.

Each monitored device has one or more device parameters that represent monitored items. For instance,
monitoring lamp hours of a video projector is accomplished through a "Lamp Hours" parameter that belongs
to the "Video Projector" device. All parameters must be associated with a device.

In order to monitor a device, the NetLinx system must register the device and one or more parameters with
RMS. For instance, monitoring of lamp hours of the video projector is only available if the NetLinx system has
added the appropriate code. In many cases, this is as simple as adding a RMS support module.

Install Checklist

Is the RMS server's host name registered with your DNS server?

Yes • Configure each NetLinx system to point the correct DNS server and supply the HostName to the
NetLinx programmer to use in the 'SERVER-' command. The DNS server configuration will be
picked up automatically through DHCP if the DNS servers are registered with the DHCP server.

No • Determine the IP address of the RMS server and supply this to the NetLinx programmer to use in
the 'SERVER-' command.

Do you want to use 3839 as the TCP/IP port for communications between Netlinx and the
RMS server?

Yes • No changes need to be made in either the RMS server or NetLinx.

No • Configure the TCP/IP in the RMS server using the Configuration Wizard and supply the new port to
the NetLinx programmer to use in the 'SERVER-' command.
2 RMS - NetLinx Programmer’s Guide

Overview
Device Values

Each monitored device has a set of values used in its description. These values are supplied when the device is
registered and consist of the following:

Parameter Values

Each parameter has a set of values used to determine what conditions indicate a problem and what type of
problem this condition represents. These values are supplied when the parameter is registered and consist of
the following:

Device Values

• Device Number This is the device number of the device, as defined in the NetLinx program. Devices are
tracked by Device ID so this value must be unique within the devices of a given room.
For instance, you can have multiple "1:1:0" devices as long as there is only one device with
a Device ID of "1:1:0" in the room.

• Name This is the name of device. This name is displayed on the administrators console and read-
ily identifies the device.

• Manufacturer This is the manufacturer of the device. If this value is not supplied during registration, the
manufacturer of the NetLinx-connected device will be used.

• Model This is the model number of the device. If this value is not supplied during registration, the
model name of the NetLinx-connected device will be used.

• Device Type This is the device type of the NetLinx-connected device.
This might be "NI-2000" or "NXP-TPI/4 Touch Panel". This is available for Axcess and
NetLinx devices. This information is registered automatically by the RMS server.

• Serial Number This is the serial number of the NetLinx-connected Device.
This is only available for NetLinx devices. This information is registered automatically by
the RMS server.

• Firmware
Version

This is the firmware version of the NetLinx-connected device.
This is only available for NetLinx devices. This information is registered automatically be
the RMS server.

• Address and
Address Type

This is the physical address and address type for the Netlinx-connected device.
This information describes how the device is connected to the NetLinx master.
• A device connected via ICSNet will display "ICSNet" for the address type and the

hardware's network address for the address.
• A device connected via IP will display "TCP/IP" for the address type and the IP address

for the address.
• Axcess devices will display "AXLink" for both values.
This information may be useful for diagnosing device connectivity problems.
This information is registered automatically by the RMS server.

Parameter Values

• Name This is the name of parameter. This name is displayed on the RMS server console and
readily identifies the parameter.
Parameters are tracked by name so this name must be unique within the parameters of a
given device.
For instance, you can have multiple "Lamp Hours" parameters as long as there is only
one "Lamp Hours" parameter per monitored device.

• Parameter
Type

This value indicates if this value is a number or a string.
This information is used to determine how to perform certain operation, such as addition
and comparisons between the new and threshold values.
For instance, comparing "10" and "2" as strings results in "10" less than "2" but comparing
them as numbers results in "2" less than "10".
3RMS - NetLinx Programmer’s Guide

Overview
All parameters must be registered by the NetLinx system. The administrator cannot add parameters from the
RMS console. The administrator can modify Threshold Value, Comparison Operator, and Status Type for any
parameter. This provides the administrator with the ability to set their own thresholds and re-classify messages
based on their facility.

For instance, an administrator can set the Video projector's "Lamp Hours" threshold to the expected lamp life
of a newly replaced lamp or change the "Device Communicating" parameter from a "Control System Error" to
a "Security" status if the projector is in danger of being stolen.

Parameter Values (Cont.)

• Value and
Units

This is the current value of the parameter.
Units are appended to the value when displayed in the web console.

• Threshold Value
and Comparison
Operator

The threshold value is the value for which this parameter is considered to indicate a prob-
lem or fault.
The comparison operator is used to detect when the value changes from the un-faulted to
the faulted condition.
• The comparison operators "Less Than", "Less Than or Equal To", "Greater Than",

"Greater Than or Equal To", "Equal To", and "Not Equal To" can be used for string and
number parameters.

• The comparison operators "Contains" and "Does Not Contain" are primarily used for
string parameters.

For example, "Lamp Hours" might have a threshold value of 1000 and any value over this
would require maintenance.
The comparison operator would then be "Greater Than".
• When this parameter changes from a value that is not greater than 1000 to a value that

is greater than 1000, the fault status is set.
• When the value changes from a value greater than 1000 to a value not greater than

1000, the fault status is cleared.
These value are supplied during registration but can be modified by the administrator
from the RMS server console.

• Status Type The status represents the type of problem a faulted condition represents.
Status Types include "Help Request", "Maintenance Request", "Room Communication
Error", "Control System Error", "Network Error", "Security", and "Equipment Usage."
For example, when "Lamp Hours" changes from an un-faulted (not greater than 1000) to
a faulted (greater than 1000), this change represents a "Maintenance Request" status
that requires an AV technician to repair the equipment.
If the "Device Online" parameter changes from "Online" to "Offline", this change could
represent a "Security" or "Control System Error" status.
These value are supplied during registration but can be modified by the administrator
from the RMS server console.

• Reset Flag and
Reset Value

These values determine if and how the parameter can be reset from the RMS server con-
sole. If the Reset Flag is set, then the administrator can reset the value remotely. When
the administrator selects "Reset" from the console, the Reset Value is copied to the Value
and the faulted condition is cleared. These values are useful for parameters such as VCR
"Run Time" which would be manually reset when the VCR is cleaned.

• Minimum and
Maximum Values

These values are used to restrict the range of the threshold and reset values that the
administrator can enter on the RMS server console.
These values would be used when the parameter represents a value with a bounded
range, such as a Volume Level.

• Enumeration List This value is used to restrict the range of the threshold and reset values that the adminis-
trator can enter on the RMS server console.
This value would be used when the parameter represents a value with a bounded list,
such as a list containing the values Power On and Power Off.
4 RMS - NetLinx Programmer’s Guide

Overview
Status Types

RMS supports the following status types for device monitoring: "Help Request", "Maintenance Request",
"Room Communication Error", "Control System Error", "Network Error", "Security", and "Equipment
Usage."

While there are no firm rules for what these status types mean and how they are used, AMX provides the
following description of each status type and recommends that your usage is consistent with these
descriptions.

Notification Process

As NetLinx sends parameter updates to the RMS server, the RMS server checks to see if the parameter's
threshold value has been reached. This comparison is made by checking the previous value of the parameter
against the threshold and by checking the new version of the parameter against the threshold using the
threshold comparison operator. If the comparison for the old value is False and the comparison for the new
value is True, then the parameter triggers an Alert message. If the comparison for the old value is True and the
comparison for the new value is False, then the parameter triggers an Advise message. Therefore an Alert
message is generated when a parameter reaches its threshold, and an Advise message is generated when a
parameter returns to its normal operating range.

Alert Messages

When an Alert message occurs, the RMS server first checks to see if message should be logged to the various
log services. A message is created for each log service using the Log Text of the parameter's Alert template, or
the default template if a custom template has not been assigned. Next, the RMS server checks for any
notifications in the Notification List matching the group, room, and status type for the parameter and dispatch
any messages via SMTP or SNPP as needed using the appropriate text from the template assigned to the
parameter.

Advise Messages

When an Advise message occurs, the RMS server first checks to see if the parameter is configured for sending
Advise messages. If not, no messages are sent and no Log entries are created. If the parameter has been
configured for Advise messages, the message is logged and dispatched via SMTP an SNPP as described
above. However, the Advise template assigned to the parameter, or the default Advise template if no template
has been assigned to the parameter, is used to generate the text for the log entries and messages.

For instance, if the previous value for Projector Lamp Hours is 999 and the new value is 1001 and the
threshold is set to 1000 and the threshold operator is set as "Greater Than", the RMS server checks to see if the
previous value compared to the threshold, i.e. 999 is Greater than 1000 is False, has a different result than the
new value compared to the threshold, i.e. 1001 is Greater than 1000 is True. This change results in an Alert
message being logged using the RMS logging settings. Also, a message is sent to all users registers for a
notification matching the parameters group, room and status type.

Status Types

• Help Request A user generated help request such as a help button on the touch panel.

• Maintenance
Request

A user or monitored equipment generated maintenance request. Maintenance
issues would include items that require a technician to visit the room.

• Room Communication
Error

A loss of communication between the room and the RMS server.

• Control System
Error

Any error that represents a control system error, such as an offline device or loss of
communication with a device.

• Network Error Any network related error. These would most commonly be associated with loss of
communication with devices that communicate via IP.

• Security Any security related issue. It might be appropriate to classify issues that might nor-
mally be classified as Control System or Network errors as Security issues instead.
This might include a touch panel going offline or loss of communication with a
projector depending on the physical security of these devices.

• Equipment Usage Any issue that does not require repair or maintenance and that is mainly used for
status.
5RMS - NetLinx Programmer’s Guide

Overview
If the Lamp Hours changes from 1001 to 999, the RMS server triggers an Advise message. If the parameter is
configured to send Advise messages, the message is sent to the log and to all users registered for a notification
matching the parameters group, room, and status type.

RFID Device Tracking

RMS supports device location tracking using radio frequency identification (RFID) technology. For more
information on how RFID works with RMS, please see the RFID section in the RMS Administrator's Guide.

Implementing RFID tracking with the RMS SDK is very simple. RMS makes use of the Anterus RFID
hardware and the Anterus RFID Duet Module to enable RFID functionality in RMS.

If you are using RMSCodeCrafter, then it already supports the options for RFID and prompts you for the
proper input criteria. However, if you prefer to manually implement the RFID tracking code, then the steps
required to include RFID tracking are as follows:

1. Download and install the Anterus Duet Module on the same computer where you are compiling the RMS
NetLinx project.

2. Define the Anterus RFID reader devices in the DEFINE_DEVICE section.

3. Define and include the Anterus Duet Device module using DEFINE_MODULE

4. Define and include the RMSRFIDTracking NetLinx module using DEFINE_MODULE

5. Send the 'PROPERTY-Identifiers' command to the Anterus Duet module virtual device and include all the
RFID readers the module should monitor. (see the Anterus documentation for more information on the
'PROPERTY-Identifiers' command.)

The Anterus RFID Duet Module monitors and manages all the physical RFID readers and RFID tags.

You can configure reader thresholds and sensitivity using the web based Anterus configuration pages hosted
on the NetLinx master. The purpose of the RMSRFIDTracking NetLinx module is to coordinate RFID tag
status, listen for all RFID tag changes, and communicate this information up to the RMS server.

The sample code included in the RMS SDK includes all the necessary code to implement the Anterus Duet
module and RFID tracking.

In the RMSMain.AXS file, search and find the #DEFINE RMS_RFID_ENABLED statement.

If this statement is un-commented, then the sample code will compile including all the necessary RFID
implementation code.

The implementation code can be found in the RMSMain.AXS and RMSMain.AXI files.
6 RMS - NetLinx Programmer’s Guide

Getting Started
Getting Started

Overview
In order to monitor devices from an RMS system, you will need to add programming to your NetLinx project.
Only the devices and parameters that you register from NetLinx can be monitored; the administrator cannot
add parameters from the RMS console.

While all of the device monitoring programming can be done manually, RMS CodeCrafter can generate code
for your project. From this program, you can enter the information for the device monitoring and then generate
an Include (AXI) file. The Include (AXI) file contains the necessary code to register monitored devices. Once
the Include file is created, you need to include this file in your main program with an #INCLUDE statement
and make sure the RMS device is defined. Also, you need to add code to set the values of any custom
parameters.

Using RMS CodeCrafter
To use RMSCodeCrafter, create a new RMSCodeCrafter project by opening the program from the AMX
Resource Management Suite > RMSCodeCrafter Program Folder.

For details on operating the program, see the RMSCodeCrafter help file.

The RMS SDK consists of a series of modules to simplify device monitoring programming. Device
monitoring modules handle the registration of devices and parameters, and keeping track of lamp hours and
transport run time. In most cases, adding device monitoring is achieved by selecting the appropriate device
monitoring module and adding code to inform the module of important device changes.

The RMS support modules register and monitor the following parameters:

Basic Device (RMSBasicDeviceMod):

Device Online/Offline, Power, Communication Status for Serial devices, Control Failure (Optional), IP
Address of Socket-based devices.

Projector (RMSProjectorMod):

Device Online/Offline, Power, Lamp Hours, Communication Status for Serial devices, Control Failure
(Optional), IP Address of Socket-based devices.

Transport (RMSTransportMod):

Device Online/Offline, Power, Run Time, Communication Status for Serial devices, Control Failure
(Optional), IP Address of Socket-based devices.

Slide Projector (RMSSldProjMod):

Device Online/Offline, Power, Lamp Hours
7RMS - NetLinx Programmer’s Guide

Getting Started
RMS NetLinx Code Architecture
FIG. 1 provides a visual description of the architecture of the RMSMain.axi and the RMS support modules:

Interfacing With the RMS SDK
Once you have used RMS CodeCrafter to generate the device monitoring code for your system, you will need
to communicate device status to the RMS support modules.

First, you will need to notify RMS when the system power is turned on and off.

To notify RMS when the system power is ON, call this function:

RMSSetSystemPower(TRUE)

To notify RMS when the system power is turned off, call this function:

RMSSetSystemPower(FALSE)

Next, you will need to notify RMS when device power is turned on and off.

z If you are using an AMX Comm module to communicate to your device, the RMS support modules
will automatically communicate with the Comm module to determine power status.

z If you are using a power sensing device to monitor power and the power sending status appears on
channel 255 of the real device, the RMS support modules will automatically detect power status.

To notify RMS when the device power is ON, call this function:

RMSSetDevicePower(DeviceIdentifier,TRUE)

Where DeviceIdentifier is the identifier for the real device, such as dvProj.

To notify RMS when the device power is OFF, call this function:

RMSSetDevicePower(DeviceIdentifier,FALSE)

Where DeviceIdentifier is the identifier for the real device, such as dvProj.

FIG. 1 Architecture of The RMSMain.axi And The RMS Support Modules
8 RMS - NetLinx Programmer’s Guide

Getting Started
For projectors, you will need to notify RMS when the lamp hours changes If your projector does not support
a lamp hours command, you need to make sure you notify RMS of the projector power using
RMSSetDevicePower(). The RMSProjectorMod module will estimate lamp hours using projector power, if
you are using an AMX Comm module to communicate to your device, the RMSProjectorMod will
communicate with the Comm module to determine lamp hours automatically.

If your projector supports a lamp hours command, it is recommended you add code to poll and parse lamp
hours. Once you have obtained lamp hours from your projector, notify RMS by calling this function:

RMSSetLampHours(DeviceIdentifier,Value)

Where DeviceIdentifier is the identifier for the real device, such as dvProj, and Value is the lamp hour's
value.

For transport devices, you will need to notify RMS when the transport state changes. If you are using an
AMX Comm module to communicate to your device, the RMSTransportMod will communicate with the
Comm module to determine transport state automatically. If you are using an AMX system call with no
feedback offset, i.e. FIRST is 0, RMSTransportMod will communicate with the SYSTEM_CALL to determine
transport state automatically.

To notify RMS of the transport state for a custom transport implementation, use this function:

RMSSetTransportState(DeviceIdentifier,State)

Where DeviceIdentifier is the identifier for the real device, such as dvVCR, and State is the transport
state: Play=1, stop-2, Pause=3, FFwd=4, Rew=5, SrchFwd=6, SrchRev=7, Record=8.

For serial devices, including, RS232 and IP controlled devices, you need to add some polling commands to
these device in order to allow the RMS support module to properly report the Device Communicating
parameter. The RMSBasicDeviceMod, RMSProjectorMod and RMSTransportMod expect to receive a string
from the device every 30 seconds. If a string is not received within the timeout period, a loss of device
communication is reported to the RMS server.

The default value for the Device Communicating timeout is 30 seconds. If this value works for your device, all
you need to do is add the polling for the device.

If you want to change the timeout, set the Device Communicating timeout for a monitored device, which will
in turn call RMSSetCommunicationTimeout() to change the default timeout.

z The timeout time is specified in 1/10 seconds.

z If you want to disable the Device Communicating parameter, set the timeout to 0.

Service Mode
RMS supports a Service mode where no errors will be reported from monitored devices.

Service mode is designed to allow a technician to work on a room without causing error reports. For instance,
if a projector needs to be replaced or serviced, RMS would report Device Not Communicating when the
technician disconnected the power cable or communication cable. To prevent this error from being reported to
RMS, put RMS in service mode using the 'SERVICE-ON' command. When the work is completed, exit service
mode using the 'SERVICE-OFF' command.

Since service mode bypasses error reporting, it represents a security problem. For instance, in service mode no
error is reported when the projector stops communicating even if it is being disconnected by unauthorized
personnel. Therefore, service mode does not appear as a button on a touch panel.

Service mode should be implemented in an appropriate method for the facility. These methods may include:

z A button on a protected touch panel page

z A button on a protected web-based touch panel page

z A switched connected to an IO port on a NetLinx system accessible only by technicians.

z A key-activated switch connected to an IO port on a NetLinx system.

Service Mode does not prevent notifications from being sent if disconnection occurs
from the NetLinx Master.
9RMS - NetLinx Programmer’s Guide

Getting Started
Device Parameter Persistence
Monitored devices and parameters are registered with RMS the first time a NetLinx system connects to the
RMS server. These devices and parameters are stored internally in RMS.

When NetLinx connects and sends device and parameter registration, any devices and parameters that already
exists in RMS are not overwritten. This allows the administrator to change a value, such as the lamp life
threshold of a projector, and the value will not be lost, even if the NetLinx systems disconnects and reconnects.
As a result, changes to device monitoring NetLinx code will not take affect if the changes are made to devices
or parameters that already exists in RMS.

For instance, if you change the threshold value for a parameter or delete a device or parameter and reload the
NetLinx code, the new threshold will not be used and any deleted device or parameters will still appear in
RMS.

To clear out all monitored devices and parameters, delete the room and then add the room back.

z Deleting a room from RMS deletes all associated monitored devices and parameters from the RMS
server.

z Optionally, you can delete a device or a parameter from the RMS console provided the device is not
the "System" device and the parameter is not one of its parameters.
10 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
Custom Device Monitoring Programming

Overview
The RMS SDK is made up of a series of modules and include files. See FIG. 1 on page 8 for a visual
description of the architecture of the RMSMain.axi and the RMS support modules.

RMSCommon.axi
RMSCommon.axi is an included file designed to help perform many device monitoring tasks. This file
provides device-monitoring constants, functions that generate device monitoring SEND_COMMANDs to
RMS, as well as providing a "callback" function for important device monitoring RMS events.

In order to use this include file, your program will need to define the RMS device and a couple of functions.
The include file sends commands to and creates an event for the RMS device, vdvRMSEngine. You must
create this device in your program. In your code, the device definition needs to be defined as:

DEFINE_DEVICE

vdvRMSEngine = 33001:1:0

The virtual device number needs to be unique and not conflict with any other virtual device defined in your
program.

RMS will notify your program when it is time to register devices and parameters and when the administrator
resets a parameter from the RMS console. RMS sends these events to your program as a string from
vdvRMSEngine. The event processing section in this include file will process these strings, parse the
parameters and call a function in your program to notify you of the event.

These functions need to be defined in your program whether you use them or not, otherwise the compiler will
generate an error since it cannot find these functions.

The two functions you need to include are:

RMSDevMonRegisterCallback()

This function is called when RMS engine module connects to the RMS server. Since the RMS engine module
does not store any information about monitored devices and their parameters, this information must be sent to
the RMS only when the module is connected to the server. If you want to add any custom device monitoring
code, you can register your device and parameters in this function.

In your code, the function needs to be defined as:

DEFINE_FUNCTION RMSDevMonRegisterCallback()

{

}

RMSDevMonSetParamCallback()

The function is called when the RMS administrator chooses "Reset" for a parameter that can be reset on the
RMS console. You can determine which parameter was reset by checking the value of dvDPS and cName. All
parameters values are sent as a string so you will need to convert it appropriately.

In your code, the function needs to be defined as:

DEFINE_FUNCTION RMSDevMonSetParamCallback(DEV dvDPS, CHAR cName[], CHAR cValue[])

{

}

11RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
RMS Engine Module
The RMS Engine Module automatically registers the "System" device that is associated with the NetLinx
Master, Device ID 0:1:0.

RMS automatically registers four parameters for this device: System Power, Help Request, Maintenance
Request, and Service Mode.

In addition, the system will monitor room communication status for each room. These parameters require no
programming on your part for registration. However, you will need to add support for system power. RMS
registers and manages this parameter for you but you need to notify RMS when the system power is turned On
or Off. You can do this in one of four ways:

Turn System On:

(1) RMSSetSystemPower(TRUE)

(2) SEND_STRING vdvRMSEngine,'POWER=1'

(3) PULSE[vdvRMSEngine,27]

(4) ON[vdvCLActions,1001]

Turn System Off:

(1) RMSSetSystemPower(FALSE)

(2) SEND_STRING vdvRMSEngine,'POWER=0'

(3) PULSE[vdvRMSEngine,28]

(4) ON[vdvCLActions,1002]

The last way to inform RMS utilizes the i!-ConnectLinx device.

If you add the programming to your system to allow i-ConnectLinx to control power using the standard power
channels and provide feedback to i!-ConnectLinx for system power, this information will automatically be
read by RMS.

See the RMS Engine Module definition for details about the module and its parameters.

Example:
//This registers the dvRelay device under the name “Rack Power” - called in the online event
for dvRelay RMSRegisterDevice(dvRELAY,'Rack Power','AMX','NI-3000 Relay')//

//This sets the parameters for the registered device - called in the online event for dvRelay//

 RMSRegisterDeviceIndexParam(dvRELAY,'Rack Power',
 1,RMS_COMP_LESS_THAN,RMS_STAT_MAINTENANCE,
 FALSE,0,
 RMS_PARAM_SET,nRMSRackPowerRackPower,
 'OFF|ON')

//This function is called from CHANNEL_EVENT [dvRELAY,0] (Relay on or off)//
 DEFINE_FUNCTION RMSSetRackPowerRackPower(INTEGER nValue)
 LOCAL_VAR
 CHAR bInit
 {
 IF (nRMSRackPowerRackPower <> nValue || bInit = FALSE)
 RMSChangeIndexParam(dvRELAY,'Rack Power',nValue)
 nRMSRackPowerRackPower = nValue
 bInit = TRUE
 }
 DATA_EVENT [dvRELAY]
 {
 ONLINE:
 {
 RMSRegisterDevice(dvRELAY,'Rack Power','AMX','NI-3000 Relay')
 RMSRegisterDeviceIndexParam(dvRELAY,'Rack Power',
 1,RMS_COMP_LESS_THAN,RMS_STAT_MAINTENANCE,
 FALSE,0,
 RMS_PARAM_SET,nRMSRackPowerRackPower,
 'OFF|ON')
 }
 OFFLINE:
 RMSNetLinxDeviceOffline(dvRELAY)
 }
12 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
 CHANNEL_EVENT [dvRELAY,0]
 {
 // Channel On
 ON:
 {
 SWITCH (CHANNEL.CHANNEL)
 {
 CASE 1:
 RMSSetRackPowerRackPower(1)
 break
 }
 }
 // Channel Off
 OFF:
 {
 SWITCH (CHANNEL.CHANNEL)
 {
 CASE 1:
 RMSSetRackPowerRackPower(0)
 break
 }
 }
 }

RMS Device Monitoring Support Modules
Next, you will want to consider adding RMS device monitoring support modules for monitoring basic devices.
Adding these support modules will handle most of the monitoring requirements for these devices. RMS offers
the following support modules:

RMSBasicDeviceMod

This module monitors basic devices. For each device, this module will register and monitor online/offline
status, communication status, control failure, and power.

z Communication status is registered only if the device is a two-way device. This includes serial
devices and IP sockets.

z Control failure is registered only if enabled via a SEND_COMMAND, and is based on the ability to
control power.

z If the device is an IP-based device, the IP address NetLinx is communicating with is also registered
with RMS.

FIG. 2 on page 13 provides a visual description of the architecture of the RMSBasicDeviceMod module:

FIG. 2 Architecture of The RMSProjectorMod Module

13RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
RMSProjectorMod

This module monitors projectors. For each projector, this module will register and monitor online/offline
status, communication status, control failure, power, and lamp hours.

z Communication status is registered only if the device is a two-way device. This includes serial
devices and IP sockets.

z Control failure is registered only if enabled via a SEND_COMMAND, and is based on the ability to
control power.

z If the device is an IP-based device, the IP address NetLinx is communicating with is also registered
with RMS.

z Lamp hours are determined by counting the time that the device's power is On. However, this
module can also accept the value of lamp hours as a SEND_COMMAND when you have a
projector that can provide lamp hours. Since this module registers lamp hours, it is recommended
only for use with devices that have lamps that need to be replaced.

FIG. 3 provides a visual description of the architecture of the RMSProjectorMod module:

RMSTransportMod

This module monitors transport devices. For each transport device, this module will register and monitor
online/offline status, communication status, power, and run time.

z Communication status is registered only if the device is a two-way device. This includes serial
devices and IP sockets.

z Control failure is register only if enabled via a SEND_COMMAND, and is based on the ability to
control power.

z If the device is an IP-based device, the IP address NetLinx is communicating with is also registered
with RMS.

z Run time is determined by counting the time that the device is in a transport state other than stop
while the power is on.

FIG. 4 provides a visual description of the architecture of the RMSTransportMod module:

FIG. 3 Architecture of The RMSTransportMod Module
14 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
RMSSldProjMod

This module monitors slide projectors. For each projector, this module will register and monitor online/offline
status, power, and lamp hours.

Lamp hours are determined by counting the time that the device's power is On.

FIG. 5 provides a visual description of the architecture of the RMSSldProjMod module:

Programming

These modules require a virtual device, the real device of the device to be monitored, and the RMS Engine
module's device. If you are using an AMX module for communicating with a device, the virtual device used
for the Comm module can be passed to the device monitoring support module.

Since the support modules are written to listen for the messages for the particular device types they support, no
additional programming is needed. Simply define the devices, add the module, and pass the device numbers as
module parameters.

Example:
DEFINE_DEVICE

dvSlide = 96:1:0

dvVPROJ = 5001:1:0

dvVCR = 5001:2:0

dvSWT = 5001:3:0

vdvVPROJ = 33001:1:0

vdvVCR = 33002:1:0

vdvSWT = 33003:1:0

vdvRMSEngine = 33003:1:0

FIG. 4 Architecture of The RMSSldProjMod Module

FIG. 5 Architecture of The RMSBasicDeviceMod Module
15RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
// Projector Monitoring Code

DEFINE_MODULE 'RMSProjectorMod' mdlProj1(vdvVPROJ,

 dvVPROJ,

 vdvRMSEngine)

DEFINE_MODULE 'COMM_XXXXX' COMM(dvVPROJ, vdvVPROJ)

// VCR Monitoring Code

DEFINE_MODULE RMSTransportMod' mdlVCR1 (vdvVCR,

 dvVCR,

 vdvRMSEngine)

DEFINE_MODULE 'COMM_XXXXX' COMM(dvVCR, vdvVCR)

If you are not using an AMX module for communicating with a device, you will need to add programming to
notify the module of changes in the device state.

For the Basic Device and Projector module, you will need to notify the module when the power is turned On or
Off. Optionally, if you have polled for projector lamp hours, you can provide this value directly.

For the transport module, you will need to notify the module when the power is turned On or Off and when the
transport state changes.

Note that for power state, you can PULSE channel 27 or 28 to set the state.

Since most IR files store the power functions on these channels, no additional programming is needed to
send power state to the module when using these channels to control power.

Also, power status is monitored on channel 255 which is often linked to a power sensing device
connected to an IO device. If you are using an IO device to monitor power, the IO status should be set to
report on channel 255 of the real device.

In some cases, this requires a 'SET IO LINK' command to be sent to the real device. In these cases,
simply pass the real device as both the virtual and real device of the support module. However, in this
case, you cannot use SEND_STRING for notifying the module of transport state.

Notify Modules

• Turn Power On: RMSSetDevicePower(dvProj,TRUE)

SEND_STRING vdvVPROJ,'POWER=1'

PULSE[vdvVPROJ,27]

ON[vdvVPROJ,255]

• Turn Power Off: RMSSetDevicePower(dvProj,FALSE)

SEND_STRING vdvVPROJ,'POWER=0'

PULSE[vdvVPROJ,28]

OFF[vdvVPROJ,255]

• Set Lamp Hours RMSSetLampHours(dvProj,Value)

SEND_STRING vdvVProj,'LAMPTIME=Value'

• Set Transport State
(1=Play, 2=Stop, etc…):

RMSSetTransportState(dvVCR,State)

SEND_STRING vdvVCR, 'TRANSPORT=State'

PULSE[vdvVCR,State+240]

Transport States

1 Play

2 Stop

3 Pause

4 Fast Forward

5 Rewind

6 Search forward

7 Search Reverse

8 Record
16 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
Note that for transport state, you can pulse a channel between 241-248 to set the transport state.

Since AMX SYSTEM_CALLs use those channels to store transport state, no additional programming is
needed to send transport state to the module when using a SYSTEM_CALL.

In this case, simply pass the real device as both the virtual and real device of RMSTransportMod.
However, in this case, you cannot use SEND_STRING for notifying the module of transport state.

Control Failure

When the device is IR, power status is monitored using channel 255.

Axcent3's, NXC_IRS4 cards, NXI's and NI series controllers can all provide an IO link that enables an IO
status to appear on channel 255 of the device.

These modules will watch for power attempts using channel 9, 27 or 28 and report a control failure if the
power of the device does not respond properly. Additionally, the module will monitor channel 254, used as a
power fail channel when using the 'PON' commands, and report control failure conditions when this channel is
on.

This functionality must be enabled via the RMSEnablePowerFailure() function, defined in the
RMSCommon.axi include file.

Example:

DATA_EVENT[vdvRMSEngine]

{

 ONLINE:

 {

 RMSEnablePowerFailure(dvProj)

 }

}

Device Information

You can define the name, manufacturer, and model using RMSSetDeviceInfo().

Device information is usually sent in a device registration message and can only be sent when the RMS engine
module connects to the RMS server. However, if the device is monitored by a support module, the device info
message can be sent at any time.

Example:

DATA_EVENT[vdvRMSEngine]

{

 ONLINE:

 {

 RMSSetDeviceInfo(dvProj,'Name','Manufacturer','Model Number')

 RMSSetDeviceInfo(dvVCR,'Name','Manufacturer','Model Number')

 }

}

The RMSSetDeviceInfo() is defined in the RMSCommon.axi include file.
17RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
Monitoring Source Usage
RMS can monitor source usage by using the RMSSrcUsageMod module. RMSSrcUsageMod will track the
amount of time, in minutes, a given source is selected and logs this information to RMS when a new source is
selected. This information can be used to generate reports to determine the actual usage of a device in a room.

Source Select

RMSSrcUsageMod monitors the selected source through i!-ConnectLinx.

i!-ConnectLinx includes 20 source selects in the standard function list. Any standard source selected registered
with i!-ConnectLinx will automatically register in RMS by RMSSrcUsageMod.

As your programming sets the selected source on the i!-ConnectLinx device, RMSSrcUsageMod will track the
usage of the source and report it to RMS.

To enable usage monitoring of a standard i!-ConnectLinx source, simply register the source with
i!-ConnectLinx and add programming for the source select as if you were programming a button from a touch
panel.

Example:

DEFINE_EVENT

BUTTON_EVENT[vdvCLActions,1011] // VCR Select

{

 PUSH:

 {

 // Switch the projector and switcher to select the VCR

 PULSE[vdvCLActions,1011]

 }

}

DATA_EVENT[vdvCLActions]

{

 ONLINE:

 {

 // VCR Select

 SEND_COMMAND vdvCLActions,"'ADD STD-1011'"

}

Additionally, you can add custom source to i!-ConnectLinx as custom actions.

Any custom action registered with i!-ConnectLinx that is named "Select …" will be registered as a custom
source.

For instance, a custom action called "Select Slide To Video" will register a source called "Slide To Video."

Example:

DEFINE_EVENT
BUTTON_EVENT[vdvCLActions,1]// Custom Source
{
 PUSH:
 {
 // Switch the projector & switcher to select the Source
 PULSE[vdvCLActions, 1]
 }
}

DATA_EVENT[vdvCLActions]

{

 ONLINE:

 {

 // VCR Select

 SEND_COMMAND vdvCLActions,"'ADD ACTION-1,Select Custom Source'"

}
18 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
To notify i!-ConnectLinx and RMSSrcUsageMod when no source is active, set the i!-ConnectLinx status for
Power Off using the standard Power Off action:

PULSE[vdvCLActions, 1002]

By default, RMS monitors a single source at a time. If a new source is selected, the previous selected source's
usage is tracked and the new source is selected. However, if you have more that one destination in your system,
such as two projectors, this operation is not desirable.

RMS can monitor each source independently based on the status of the source select channel. To enable this
mode in RMSSrcUsageMod, call RMSSetMultiSource() with a parameter of true.

Example:

DATA_EVENT[vdvRMSEngine]

{

 ONLINE:

 {

 RMSSetMultiSource(TRUE)

 }

}

FIG. 6 provides a visual description of the architecture of the RMSSrcUsageMod module:

Monitoring Many NetLinx-Connected Devices
RMSNLDeviceMod

This module monitors one or more NetLinx-connected devices. For each device, the module will register and
monitor the online/offline status.

This module provides a very simple way to monitor NetLinx-connected devices. However, it does not allow
the naming of these devices. All devices registered with this module will display their device definition for
their name, for example 128:1:0, and the manufacturer and model will be determined by the device.

This module is most useful for monitoring a large quantity of NetLinx devices where the logical name of the
device is not important, such as a bank of Input or Relay cards.

To use this module, create a device array with the NetLinx connected devices you want monitored. Then pass
this device array to the module:

DEFINE_DEVICE

dvDev1 = 5002:1:0

dvDev2 = 5002:2:0

dvDev3 = 5002:3:0

vdvRMSEngine = 33001:1:0

FIG. 6 Architecture of The RMSSrcUsageMod Module
19RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
DEFINE_VARIABLE

// RMS NetLinx Device to Monitor

VOLATILE DEV dvMonitoredDevices[]= {dvDev1, dvDev2, dvDev3}

DEFINE_MODULE 'RMSNLDeviceMod' mdlNLD(dvMonitoredDevices, vdvRMSEngine)

FIG. 7 provides a visual description of the architecture of the RMSNLDeviceMod module:

Monitoring A Single NetLinx-Connected Device
The RMSCommon.axi include file provides two functions that help to monitor the Online/Offline status of a
NetLinx connected device. You can use these functions to monitor a device like a touch panel or bus box.
These two functions are:

z RMSNetLinxDeviceOnline(dvDPS, cName)

z RMSNetLinxDeviceOffline(dvDPS)

RMSNetLinxDeviceOnline() will register the device and the online/offline parameter as well as set the
parameter to online. This function will need to be called in two places:

z Call RMSNetLinxDeviceOnline() in the RMSDevMonRegisterCallback() function to make sure it is
registered when the RMS engine module connects to the RMS server.

z Also, call RMSNetLinxDeviceOnline() when the NetLinx-connected device reports online.

RMSNetLinxDeviceOffline() updates the online/offline parameter to offline. It only needs to be called when
the NetLinx-connected device reports offline.

Example:

DEFINE_DEVICE

dvTP = 10000:1:0

DEFINE_FUNCTION RMSDevMonRegisterCallback()

{

 RMSNetLinxDeviceOnline(dvTP,'Touch Panel 1')

}

DEFINE_EVENT

DATA_EVENT[dvTP]

{

 ONLINE:

 RMSNetLinxDeviceOnline(dvTP,'Touch Panel 1')

 OFFLINE:

 RMSNetLinxDeviceOffline(dvTP)

}

FIG. 7 Architecture of The RMSNLDeviceMod Module
20 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
Registering Devices
The RMSCommon.axi include file provides some simple functions for registering devices. The functions can
be used in the RMSDevMonRegisterCallback() function, called when RMS engine module connects to the
RMS server.

These functions generate SEND_COMMANDs, which you can generate manually. However, using these
functions may help eliminate syntax issues.

To register a device, call this function:

RMSRegisterDevice(dvDPS, cName, cManufacturer, cModel)

This function needs to be called in two places:

z Call RMSRegisterDevice () in the RMSDevMonRegisterCallback() function to make sure it is
registered when the RMS engine module connects to the RMS server.

z Also, call RMSRegisterDevice () when the NetLinx-connected device reports online. This function
will automatically register the Online/Offline parameter and set this value to Online.

The RMSRegisterDevice() function and the corresponding RMS SEND_COMMAND that it generates will
only work for devices that are currently online. This is because RMS tracks information such as firmware
version and serial number that are only available when the device is online.

Registering Parameters
Before registering a parameter, the device with which the parameter is associated must have been previously
registered. However, if a support module RMS has registered the device already, you do not need to re-register
it. For instance, you may want to add a parameter to the "System" device, 0:1:0. In this case, simply register
the parameter for device 0:1:0.

The combination of Number and String parameters types and enumeration lists provide four unique kinds of
parameters to the NetLinx program. These are:

Registering Parameters

• Number Parameter Number parameters are parameters of type number with no enumeration list. These are
commonly used for values that are programmatically available and displayed in numeric
form.
Examples of number parameters are projector lamp hours and VCR run time.

• String Parameter String parameters are parameters of type string with no enumeration list. These are
commonly used for values that are programmatically available and displayed in text
form.
Examples of string parameters are help or maintenance request.

• Enum Parameter Enum parameters are parameters of type string with an enumeration list.
These are commonly used for values that are programmatically available and displayed
in text form where the text is expected to be limited to a list.
The value NetLinx sends for an enumeration parameter needs to exist in the enumera-
tion list. However, the administrator will only be allowed to pick a threshold or reset value
from the enumeration list.
An example of an enum parameter is the currently selected source.
The "|" character is used to separate values in the enumeration list.

• Index Parameter Index parameters are parameters of type number with an enumeration list and are
similar to the Enum parameter. However, these are commonly used for values that are
programmatically available numerically but displayed in text form where the text is
expected to be limited to a list.
The value NetLinx sends for an enumeration parameter must exist in the enumeration
list. However, the value sent from NetLinx represents the index into the enumerated list
instead of the actual value.
An example of Enum parameters is power. The value for power is often available
programmatically as a zero or a one but should be displayed as "Off" or "On."
This is accomplished by sending a value of zero or one to RMS and providing an
enumeration list of "Off|On" where the "|" character is used to separate values in the
enumeration list.
21RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
The include file provides four functions for registering these parameters:

RMSRegisterDeviceNumberParam(dvDPS,

 cName,

 slThreshold,

 nThresholdCompare,

 nThresholdStatus,

 bCanReset,

 slResetValue,

 nInitialOp,

 slInitial,

 slMin,

 slMax)

RMSRegisterDeviceIndexParam dvDPS,

 cName,

 nThreshold,

 nThresholdCompare,

 nThresholdStatus,

 bCanReset,

 nResetValue,

 nInitialOp,

 nInitial,

 cEnumList)

RMSRegisterDeviceStringParam dvDPS,

 cName,

 cThreshold,

 nThresholdCompare,

 nThresholdStatus,

 bCanReset,

 cResetValue,

 nInitialOp,

 cInitial)

RMSRegisterDeviceEnumParam dvDPS,

 cName,

 cThreshold,

 nThresholdCompare,

 nThresholdStatus,

 bCanReset,

 cResetValue,

 nInitialOp,

 cInitial,

 cEnumList)

Optionally, you can register a parameter with a Unit field. The Unit field will be displayed next to the
parameter value and threshold. Consider adding a "V" if you or monitoring voltage or a "%" if you are
monitoring percentage.
22 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
Two additional registration functions allow for the units field and can be used in place of the above functions:

RMSRegisterDeviceNumberParamWithUnits(dvDPS,

 cName,

 cUnits,

 slThreshold,

 nThresholdCompare,

 nThresholdStatus,

 bCanReset,

 slResetValue,

 nInitialOp,

 slInitial,

 slMin,

 slMax)

RMSRegisterDeviceStringParamWithUnits(dvDPS,

 cName,

 cUnits,

 cThreshold,

 nThresholdCompare,

 nThresholdStatus,

 bCanReset,

 cResetValue,

 nInitialOp,

 cInitial)

This function needs to be called in two places:

z Call RMSRegisterDevicexxxParam () in the RMSDevMonRegisterCallback() function to make
sure it is registered when the RMS engine module connects to the RMS server.

z Also, call RMSRegisterDevicexxxParam () when the NetLinx-connected device reports online.

Parameters

z dvDPS is the device number of the device this parameter is associated with,

z cName is the name of the parameter to register.

z nThresholdCompare can be any of the following values:

RMS_COMP_NONE (0),

RMS_COMP_LESS_THAN (1),

RMS_COMP_LESS_THAN_EQ_TO (2),

RMS_COMP_GREATER_THAN (3),

RMS_COMP_GREATER_THAN_EQ_TO (4),

RMS_COMP_EQUAL_TO (5),

RMS_COMP_NOT_EQUAL_TO (6),

RMS_COMP_CONTAINS (7),

RMS_COMP_DOES_NOT_CONTAIN (8).

This value, along with slThreshold, nThreshold, or cThreshold is used to test to see when the
parameter indicates a fault, as determined by the threshold comparison changing from false to true
(i.e. Value > 10).
23RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
z The nThresholdStatus can be any of the following:

RMS_STAT_NOT_ASSIGNED (1),

RMS_STAT_HELP_REQUEST (2),

RMS_STAT_ROOM_COMM_ERR (3),

RMS_STAT_CONTROLSYSTEM_ERR (4),

RMS_STAT_MAINTENANCE (5),

RMS_STAT_EQUIPMENT_USAGE (6),

RMS_STAT_NETWORK_ERR (7),

RMS_STAT_SECURITY_ERR (8).

One of these values classifies a fault with this parameter as a Help Request, Room Communication
Error, Control System Error, Maintenance, Equipment usage, Network Error, or Security issue.

z bReset and slResetValue, nResetValue or cResetValue are used to allow the administrator to
manually reset the value.

If bReset if False, then slResetValue, nResetValue and cResetValue are ignored.

z nInitialOp and slInitial, nInitial and cInitial are used to set the value of the parameter at the time
it is registered.

nInitialOp can be one any of the following values:
RMS_PARAM_SET (0),

RMS_PARAM_INC (1),

RMS_PARAM_DEC (2),

RMS_PARAM_MULTIPLY (3),

RMS_PARAM_DIVIDE (4),

RMS_PARAM_UNCHANGED (6).

This eliminates the need to send a separate set parameter messages after the parameter is registered.
These constants allow you to control whether the supplied value is set, added to, subtracted from,
multiply with, divided by the number in the database or if you simply want the value in the database
to remain the same.

z slInitial, nInitial and cInitial are the value with which the operation will be performed.

z slMin, slMax and eEnumList are used to limit the administrator’s selection of the threshold and
reset values.

z The "|" character is used to separate values in the enumeration list.

z For Number parameters, slMin and slMax define the range the value is expected to have.

z For Index and Enum, cEnumList contains the allowed values of the parameter.

Setting Parameter Values
You can set a parameter value any time after the RMS engine module has connected to the RMS server. Before
setting the value of a parameter, the parameter must be registered.

When registering parameters, you can supply the initial value. Therefore, you will not need to set the
parameter explicitly when it is registered, only subsequent changes.

The include file provides four functions for setting parameter values. They are:

RMSChangeNumberParam(dvDPS, cName, nOp, slValue)

RMSChangeIndexParam(dvDPS, cName, nValue)

RMSChangeStringParam(dvDPS, cName, nOp, cValue)

RMSChangeEnumParam(dvDPS, cName, cValue)

z dvDPS is the device number of the device with which this parameter is associated.

z cName is the name of the parameter to set.

z nOp can be one of the following values:

RMS_PARAM_SET (0),

RMS_PARAM_INC (1),

RMS_PARAM_DEC (2),

RMS_PARAM_MULTIPLY (3),

RMS_PARAM_DIVIDE (4),

RMS_PARAM_RESET (5).
24 RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
These constants allow you to control whether the supplied value is set, added to, subtracted from,
multiply with, divided by the number in the database or if you simply want the value in the database
reset to the values supplied during parameter registration.

z slValue, nValue and cValue are the current value with which the operation will be performed.

Note that Index and Enum parameters so do not support the nOp argument. The results of
mathematical operation on an Index or Enum parameter are undefined.

Note that nValue for Index parameters are 0 based. The first element in cEnum, supplied during
registration, is index 0, the second element is index 1, etc...

Most commonly, you will use the RMS_PARAM_SET (0) operation. However, there may be instances where
you want to simply allow the database to keep track of the value and notify it of changes only. In these cases
RMS_PARAM_INC (1) and RMS_PARAM_DEC (2) are useful for adding and subtracting a value from the
current value in the database.

These operations can be used with both Number and String parameters.

z RMS_PARAM_INC (1) appends the string value to the current string

z RMS_PARAM_DEC (2) removes the string value from the current string.

The results of multiple and divide on a String parameter are undefined.

Note that values for slMin, slMax and cEnumList supplied during parameter registration are not used to
validate the value set using these functions.

z If a Number parameter value falls outside the range of slMin or slMax, the value is stored in the
database and displayed.

z If an Enum parameter value does not appear in the cEnum list, the value is stored in the database
and displayed.

z If an Index parameter value does not have an associated index in the Enum List, the value is stored
in the database and displayed as an empty value.
25RMS - NetLinx Programmer’s Guide

Custom Device Monitoring Programming
26 RMS - NetLinx Programmer’s Guide

Custom "Scheduling Only" Programming
Custom "Scheduling Only" Programming

Overview
If you wish to only utilize the scheduling features of RMS, the RMS SDK can be optimized by only including
the necessary RMS modules in your NetLinx program.

Review the following listing of RMS modules to determine which you will need to include in your program.

RMS is capable of supporting multiple (up to 12) instances of Scheduling on a single
NetLinx Master. If you intend to run multiple instances of Scheduling on a Master,
then that Master should be dedicated solely to RMS Scheduling only.

Custom "Scheduling Only" Programming RMS modules

RMS Module Required for
Scheduling

Description

RMSEngineMod Yes The RMSEngineMod is required to facilitate basic
communication between the RMS server and the NetLinx
master.

i!-ConnectLinxEngineMod Yes / Dependency The i!-ConnectLinxEngineMod is a required dependency of
the RMSEngineMod and must be included in the NetLinx
program.

RMSUIMod Optional The RMSUIMod is required if a touch panel is located inside
the room to display the room's schedule and meeting informa-
tion. Additionally, this module supports an external display
located outside the room.

RMSWelcomeOnlyUIMod Optional The RMSWelcomeOnlyUIMod is required only if a touch panel
is located outside a room for an external display of the room’s
schedule and meeting information, and no touch panel is
located inside the room. If the RMSUIMod is included in your
program, then the RMSWelcomeOnlyUIMod will not be
needed.

RMSHelpUIMod No This module is not required for RMS scheduling.

RMSNLDeviceMod No This module is not required for RMS scheduling.

RMSProjectorMod No This module is not required for RMS scheduling.

RMSTransportMod No This module is not required for RMS scheduling.

RMSBasicDeviceMod No This module is not required for RMS scheduling.

RMSSldProjMod No This module is not required for RMS scheduling.

RMSSrcUsageMod No This module is not required for RMS scheduling.
27RMS - NetLinx Programmer’s Guide

Custom "Scheduling Only" Programming
28 RMS - NetLinx Programmer’s Guide

NetLinx Modules
NetLinx Modules

RMSEngineMod Module
z Commands

z Strings

z Channels

z Levels

z Module Definition

Commands

RMSEngineMod listens for the following commands from the vdvRMSEngine device:

RMSEngineMod - Commands and Descriptions

'SERVER-[IP/Hostname]' Set the address of the RMS server. A port can be specified
by adding a colon (:) and a port number to the end of the IP
address or host name.

Example: '192.168.1.1:10501' (sets the port to
10501)

'?SERVER' Request the current server settings from the module.

'TELNET PORT-[PortNumber]' Sets the TELNET port the RMS Engine will use to commu-
nicate with the NetLinx master.
• This command is only needed if the TELNET port on the

master has been changed from the default port 24.
• This command should be issued in the online event

handler for the vdvRMSEngine virtual device to ensure
the change instruction is communicated prior to the RMS
Engine's initialization and connection to the RMS server.
Example: 'TELNET PORT-1023'

'?TELNET PORT' Queries the RMS Engine for the currently configured TEL-
NET port used by the RMS Engine.
• After issuing this command the RMS Engine will respond

with 'TELNET PORT-23', where '23' is the value of the
current TELNET port configuration.

• The response is sent as a STRING on the vdvRMSEngine
virtual device and as a STRING on device 0, the master’s
console output.
Example: '?TELNET PORT'

'HTTP PORT-[PortNumber]' Sets the HTTP port the RMS Engine will use to communi-
cate with the NetLinx master.
• This command is only needed if the HTTP port on the

master has been changed from the default port 80.
• This command should be issued in the online event

handler for the vdvRMSEngine virtual device to ensure
the change instruction is communicated prior to the RMS
Engine's initialization and connection to the RMS server.
Example: 'HTTP PORT-8080'
29RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Commands and Descriptions (Cont.)

'?HTP PORT' Queries the RMS Engine for the currently configured HTTP
port used by the RMS Engine.
• After issuing this command the RMS Engine will respond

with 'HTTP PORT-80', where '80' is the value of the
current HTTP port configuration.

• The response is sent as a STRING on the vdvRMSEngine
virtual device and as a STRING on device 0, the master’s
console output.
Example: '?HTTP PORT'

'CONNECT' If the NetLinx master's RMS IP socket is not connected to
the RMS server, this command will force an immediate con-
nection attempt.

'DISCONNECT' If the NetLinx master's RMS IP socket is currently
connected to a RMS server, this command will force an
immediate disconnect.

'RECONNECT' If the NetLinx master's RMS IP socket is currently
connected to a RMS server, this command will force an
immediate disconnect and re-connect.
If the NetLinx master's RMS IP socket is not currently
connected to a RMS server, this command will force an
immediate connection attempt.

'CLROOT-[Folder]' Set the root folder of i!-ConnectLinx for this room.
This command can be used to limit the portion of the
i!-ConnectLinx tree available to users when configuring
room presets.
This command is used when a single NetLinx master is run-
ning more than one instance of RMS.

'ADD DEV-[DPS],[Name],
[Man],[Model]

Set device info for monitored device. DPS must be in string
form (ex: '5001:1:0').
Note: Name, Manufacturer and Model are optional.
30 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Commands and Descriptions (Cont.)

'ADD NPARAM-[DPS],[Name],
[Threshold],[Status],[Reset],
[Initial Value],[Min],[Max]'

Add a Number parameter.
DPS must be in string form (ex: '5001:1:0').

Threshold can be any of the following: • >=Value - Greater Than or Equal to Value
• <=Value - Less Than or Equal to Value
• ==Value -Equal to Value
• !=Value - Not Equal to Value
• <>Value - Not Equal to Value
• >Value - Greater Than Value
• <Value - Less Than Value
• (Value) - Contains Value
•)Value(- Does Not Contain Value

Status can be any of the following: • NONE or 1 - Not assigned
• HELP or 2 - Help Request
• ROOM or 3 - Room Communication Error
• CONT or 4 - Control System Error
• MAIN or 5 - Maintenance Error
• USAG or 6 - Equipment Usage
• NETW or 7 - Network Error
• SECU or 8 - Security Error

Reset can be any reset value or 'NO RESET' for no reset.

Initial Value can be one of the following: • Value - Set Value
• +=Value - Increment by Value
• -=Value - Decrement by Value
• *=Value - Multiply by Value
• \=Value - Divide by Value
• /=Value - Divide by Value
• RESET - reset the value
• NOCHANGE - do not change the value.

slMin and slMax can be any number from -2147483647 to 2147483647.
slMax must be greater than slMin.
Note: Set slMax and slMin to zero or omit the values to not impose a range.

'ADD SPARAM-[DPS],[Name],
[Threshold],[Status],[Reset],
[Initial Value]'

Add a String parameter.
See above in the 'ADD NPARAM' definition for a description
of all remaining arguments.

'ADD IPARAM-[DPS],[Name],
[Threshold],[Status],[Reset],
[Initial Value],[Enum List]'

Add an Index parameter. Enum List is a list of possible
values separated by the '|' character.
See above in the 'ADD NPARAM' definition for a description
of all remaining arguments.

'ADD EPARAM-[DPS],[Name],
[Threshold],[Status],[Reset],
[Initial Value],[Enum List]'

Add an Enum parameter. Enum List is a list of possible
values separated by the '|' character.
See above in the 'ADD NPARAM' definition for a description
of all remaining arguments.

'ADD NPARAM2-[DPS],[Name],
[Units],[Track Changes],
[Threshold],[Status],[Reset],
[Initial Value],[Min],[Max]'

Add a Number parameter with unit of measurement and/or
history tracking. Units is a text string of the units to append
to the parameter value when displayed.
Track Changes can be a value of '1' to enable or a value of
'0' to disable historical parameter value tracking.
See above in the 'ADD NPARAM' definition for a description
of all remaining arguments.
31RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Commands and Descriptions (Cont.)

'ADD SPARAM2-[DPS],[Name],
[Units],[TrackChanges],
[Threshold],[Status],[Reset],
[Initial Value]'

Add a String parameter with unit of measurement and/or
history tracking. Units is a text string of the units to append
to the parameter value when displayed.
Track Changes can be a value of '1' to enable or a value of
'0' to disable historical parameter value tracking.
See above in the 'ADD NPARAM' definition for a description
of all remaining arguments.

'ADD IPARAM2-[DPS],[Name],
[Units],[Track Changes],
[Threshold],[Status],[Reset],
[Initial Value],
[Enum List]'

Add an Index parameter with unit of measurement and/or
history tracking. Units is a text string of the units to append
to the parameter value when displayed.
Track Changes can be a value of '1' to enable or a value of
'0' to disable historical parameter value tracking. Enum List
is a list of possible values separated by the '|' character.
See above in the 'ADD NPARAM' definition for a description
of all remaining arguments.

'ADD EPARAM2-[DPS],[Name],
[Units],[Track Changes],
[Threshold],[Status],[Reset],
[Initial Value],[Enum List]'

Add an Enum parameter with unit of measurement and/or
history tracking. Units is a text string of the units to append
to the parameter value when displayed.
Track Changes can be a value of '1' to enable or a value of
'0' to disable historical parameter value tracking. Enum List
is a list of possible values separated by the '|' character.
See above in the 'ADD NPARAM' definition for a description
of all remaining arguments.

'SET PARAM-[DPS],[Name],[Value]' Set a parameter value.
DPS must be in string form (ex: '5001:1:0').

Value can be one of the following: • Value - Set Value
• +=Value - Increment by Value
• -=Value - Decrement by Value
• *=Value - Multiply by Value
• \=Value - Divide by Value
• /=Value - Divide by Value
• RESET - reset the value
• NOCHANGE - do not change the value.

'HELP-[Help Message]' Send a help request.

'MAINT-[Maintenance Message]' Send a maintenance request.

'GET APPTS-[Date]' Get the appointment list for Date.

'GET APPT COUNT-[Month],[Year]' Get the appointment count for Month and Year.

'DFORMAT-DAY/MONTH' Set Date format European format: Day/Month/Year

'DFORMAT-MONTH/DAY' Set Date format US format: Month/Day/Year

'TFORMAT-12 HOUR' Set Time format to 12 hour format: [01-12]:[00-59] [AM,PM]

'TFORMAT-24 HOUR' Set Time format to 24-hour (military) format: [00-23]:[00-59]

'DEBUG-CONNECT' Turn on debug. (including messages related to connection
to RMS server)

'DEBUG-ON’ Turn on general debug. (no connection messages)

'DEBUG-OFF’ Turn off debug. (Default)

'VERSION’ Send version information to master debug port (master
messaging)

'SERVICE-ON’ Turn on service mode. While in service mode, no errors will
be reported.

'SERVICE-OFF’ Turn off service mode. (Default)
32 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Commands and Descriptions (Cont.)

'ANSWER-QuestionID,Flags,Answer' Provide an answer to a question.
QuestionID and Flags should be the values supplied from
the QUESTION- string.
The Answer is a text string.

'IGNORE SERVER TIME UPDATE' Normally, NetLinx receives a time update from the RMS
server. This command tells the module to ignore these time
updates.

‘RESERVE-[StartDate],[StartTime],
[Duration],[Subject],
[<MessageBody>]

Requests the RMS server to add an ac-hoc appointment on
behalf of the room.
• [StartDate] should be formatted as ‘mm/dd/yyyy’
• [StartTime] should be formatted as ‘hh:mm’
• [Duration] is the number of minutes the meeting should be

scheduled.
• [Subject] provides the meeting subject text.
• [<MessageBody>] is an optional parameter and it

provides the meeting message body text.
Upon receipt, the RMS Server will process this request and
return a confirmation or error ‘RESERVE-‘ string. Please
see the Strings API page for further information of the
returned server response.
The ‘RESERVE’ command is supported when using the
RMS internal scheduling system or when using Microsoft
Exchange.
The ‘RESERVE’ command request will fail if the requested
appointment/meeting will conflict with another scheduled
appointment/meeting.

‘EXTEND-[Minutes]’ Extends the current appointment/meeting by the number of
minutes provided.
Upon receipt, the RMS Server will process this request and
return a confirmation or error ‘EXTEND-‘ string. Please see
the Strings API page for further information of the returned
server response.
The ‘EXTEND’ command is supported when using the RMS
internal scheduling system or when using Microsoft
Exchange.
The ‘EXTEND’ command request will fail if the appointment/
meeting extension will conflict with another scheduled
appointment/meeting.

‘ENDNOW’ End the current appointment/meeting immediately.
Upon receipt, the RMS Server will process this request and
return a confirmation or error ‘ENDNOW-‘ string. Please see
the Strings API page for further information of the returned
server response.
The ‘ENDNOW’ command is supported when using the
RMS internal scheduling system or when using Microsoft
Exchange.
33RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Commands and Descriptions (Cont.)

'?SERVER COMM' This command will query the RMS server to obtain the
server outbound communication status for each of the out-
bound communication paths.
Possible string responses:
// server outbound communication status response
(1=online)
SERVER COMM-SMTP=1,SYSLOG=1,SNPP=1,SNMP=1

// server outbound communication status response
(0=offline)
SERVER COMM-SMTP=0,SYSLOG=0,SNPP=0,SNMP=0

// master is not connected to RMS server
SERVER COMM-UNKNOWN

'?LICENSE' This command will query the RMS server to obtain the
server and room licensing information.
Possible string responses:
// licensing response (1=licensed)
LICENSE-SERVER=1,ASSET=1,SCHEDULE=1

// licensing response (0=unlicensed)
LICENSE-SERVER=0,ASSET=0,SCHEDULE=0

// unknown licensing state response
// (master is not connected to RMS server)
LICENSE-UNKNKOWN

These responses are also automatically sent out
(unsolicited) each time the master establishes a connection
to the RMS server.

'RFID INITIALIZE' This command is automatically sent from the RMSEngine
on the RMSEngine virtual device if the RMS server supports
RFID tracking. This command is sent out on each
connection to the RMS server.

READERS-<address>[,<address>]* Reports all RFID reader addresses to the RMS Server.
<address>: user assigned RFID reader address
This command is sent upon receipt of 'RFID INITIALIZE'
from RMS.
READERS-96:1:1,97:1:1,SomeAddress

Note: This command syntax is an exact match to the output
command feedback from the Anterus Duet module.
These commands send out on the Anterus virtual device
are simply relayed to the RMSEngine virtual device and on
to the RMSServer.
For more detailed information on the command syntax,
please consult the Anterus Duet module documentation.
34 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Commands and Descriptions (Cont.)

TAGSBYREADER-<readerAddress>,
<tagCount>,<tagIndex>
[,<tagId>,<tagName>,<tagInfo>,
<tagSignalStrength>,
<tagPercentPower>]*

Reports all RFID tags acquired by a RFID reader to the
RMS Server.
• <readerAddress>: user assigned reader address
• <tagCount>: total # of tags acquired.
• <tagIndex>: index of the first tag in this event.
• <tagId>: tag id
• <tagName>: tag Name
• <tagInfo>: tag Info
• <tagSignalStrength>: tag RSSI level 0...255
• <tagPercentPower>: 0...100 (100 means full battery)
TAGSBYREADER-97,2,1,1111076,MyTag1,
tag info1,250,100,1111048,MyTag2,tag info2,250,90

Note: This command syntax is an exact match to the output
command feedback from the Anterus Duet module.
These commands send out on the Anterus virtual device
are simply relayed to the RMSEngine virtual device and on
to the RMSServer.
For more detailed information on the command syntax,
please consult the Anterus Duet module documentation.

TAGACQUIRED-<readerAddress>,
<tagID>,<tagName>,<tagInfo>,
<timestamp>,<tagSignalStrength>,
<tagPercentPower>

Reports the acquisition of a RFID tag to the RMS Server.
• <readerAddress>: user assigned reader address
• <tagID>: tag id
• <tagName>: tag Name
• <tagInfo>: tag Info
• <timestamp>: YYYYMMDDhhmmssnnn string
• <tagSignalStrength>: 1...255
• <tagPercentPower>: 0...100 (100 means full battery)
TAGACQUIRED-97,1111002,Mytag,
Tag info ,20071107133720449,60,50

Note: This command syntax is an exact match to the output
command feedback from the Anterus Duet module.
These commands send out on the Anterus virtual device
are simply relayed to the RMSEngine virtual device and on
to the RMSServer.
For more detailed information on the command syntax,
please consult the Anterus Duet module documentation.

TAGLOST-<readerAddress>,<tagID>,
<tagName>,<tagInfo>,
<lastTimeStamp>

Reports the loss of a RF tag to the RMS Server.
• <readerAddress>: user assigned reader address
• <tagID>: tag id
• <tagName>: tag Name
• <tagInfo>: tag Info
• <timestamp>: YYYYMMDDhhmmssnnn string. Time of

last valid tag signal level read.
TAGLOST-97,1111002,MyTag,
Tag info,20071107133720449

Note: This command syntax is an exact match to the output
command feedback from the Anterus Duet module.
These commands send out on the Anterus virtual device
are simply relayed to the RMSEngine virtual device and on
to the RMSServer.
For more detailed information on the command syntax,
please consult the Anterus Duet module documentation.
35RMS - NetLinx Programmer’s Guide

NetLinx Modules
Strings

RMSEngineMod listens for the following string from the vdvRMSEngine device:

RMSEngineMod sends the following strings to the vdvRMSEngine device:

RMSEngineMod - Commands and Descriptions (Cont.)

TAGSIGNALSTRENGTH-<readerAddress>,
<tagID>,<tagName>,<tagInfo>,
<timestamp>,<tagSignalStrength>,
<tagPercentPower>

Reports a change in the signal strength of a RF tag to the
RMS Server.
• <readerAddress>: user assigned reader address
• <tagID>: tag id
• <tagName>: tag Name
• <tagInfo>: tag Info
• <timestamp>: YYYYMMDDhhmmssnnn string
• <tagSignalStrength>: 1...255
• <tagPercentPower>: 0...100 (100 means full battery)
TAGSIGNALSTRENGTH-97,1111002,Mytag,Tag
info,20071107133830449,65,50
Note: This command syntax is an exact match to the output
command feedback from the Anterus Duet module.
These commands send out on the Anterus virtual device
are simply relayed to the RMSEngine virtual device and on
to the RMSServer.
For more detailed information on the command syntax,
please consult the Anterus Duet module documentation.

READERSTATUS-<address>,<status>,
<errCnt>

Reports a reader's status information to the RMS Server.
• <address>: user assigned reader address
• <status>: ONLINE, OFFLINE
• <errCnt>: error count = # of invalid tag reads.
READERSTATUS-96,ONLINE,0
Note: This command syntax is an exact match to the output
command feedback from the Anterus Duet module.
These commands send out on the Anterus virtual device
are simply relayed to the RMSEngine virtual device and on
to the RMSServer.
For more detailed information on the command syntax,
please consult the Anterus Duet module documentation.

RMSEngineMod - Strings and Descriptions

'POWER=[Power State]' Set the system power state. [PowerState] should be 0 for off and 1 for on.
Example: 'POWER=1'

RMSEngineMod - Strings and Descriptions

'REGISTER' Signifies that the RMS Engine module has connected to the RMS server.
Upon receiving this string, it is safe to register devices and parameters.

'SET PARAM-[DPS],[Name],
[Value]'

Set a parameter value in NetLinx. DPS will be in string form
(ex: '5001:1:0').
This string is sent when the administrator manually resets a parameter
from the RMS console.

'ROOM NAME-[Name] The name of the room as defined in the RMS server.

'ROOM LOCATION-
[Location]'

The location of the room as defined in the RMS server.

'ROOM OWNER-[Owner]' The owner of the room as defined in the RMS server.
36 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Strings and Descriptions (Cont.)

'WEB SERVER-[HostPort]' The host/port of the web server where RMS is running.

'WEB ROOT-[Directory]' The root directory of RMS on the web server where RMS is running.

'CHANGE-[Date1,Date2,
Date3,...]'

A message indicating that appointments have been changed for the
following dates.
Dates are comma separated and in the format MM/DD/YYYY.

"'APPT COUNT-[Month],
[Year],'[Binary Array]"

The appointment count for Month and Year. Binary Array is a character
array that contains the counts for each day as binary value where the first
element in the array is for the first day of Month.

"'APPT LIST-[Date],
[Total Appt],
'[Binary Appt List]"

The appointment list summary for Date. Total Appt provides the total
number of appointments for Date.
Binary Appt list is a character array with 48 entries, 1 for each ½ hour
time slot for Date.
The value in index 1 is the appointment index of the appointment that
occupies the first ½ hour time slot (12:00am - 12:30 am).

"'APPT-Index,
'[Binary Data]"

The appointment data for an individual appointment. Index is a value
between 1 and Total Appt form the 'APPT LIST" string.
The Binary Data is a VARIABLE_TO_STRING encoded copy of an
appointment structure.
The appointment structure is defined as _sRMSAppointment in the
include file. This binary data can be passed to the
RMSDecodeAppointmentString() function, defined in the include file, to
convert the data to an appointment structure.

'MESG-[Flags],[Message]' A message from the RMS console.
Flags are the message flag and Message is the text of the message.
Currently, there are no Flags defined.

'EXTEND-No' A message indicating the current appointment could not be extended due
to a scheduling conflict.

'SERVER-[Address]:[Port]' The current RMS server address used by the module.
This is sent in response to a '/SERVER' command.

'PRODUCT-[ID],[Name],
[Version]'

The product ID, Product name, and version of the RMS server this mod-
ule is connected to.
This string is sent upon connection to the RMS server.

'QUESTION-[ID],[Flags],
[Questions],[Answer1],
[Answer2],[Answer3],
[Answer4]'

A question sent from the RMS server. The ID and Flags are used to send
the response.
A question and up to 4 answers may be included.
All answers are optional.

‘RESERVE-YES,[StartDate],
[StartTime],[Duration],
[Subject]

A “RESERVE’ appointment/meeting request command succeeded.
• [StartDate] is formatted as ‘mm/dd/yyyy’
• [StartTime] is formatted as ‘hh:mm’
• [Duration] is the number of minutes the meeting is scheduled for.
• [Subject] meeting subject text.

‘RESERVE-NO,[StartDate],
[StartTime],[Duration],
[Subject],[ErrorMessage]

A “RESERVE’ appointment/meeting request command failed or was
rejected by the server.
• [StartDate] is formatted as ‘mm/dd/yyyy’
• [StartTime] is formatted as ‘hh:mm’
• [Duration] is the number of minutes the meeting is scheduled for.
• [Subject] meeting subject text.
• [MessageBody] meeting message body text.
• [ErrorMessage] An error message is provided describing the reason for

the failure
37RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSEngineMod - Strings and Descriptions (Cont.)

‘EXTEND-YES’ An “EXTEND’ current appointment/meeting request command suc-
ceeded.

‘EXTEND-NO,
[ErrorMessage]’

An “EXTEND’ current appointment/meeting request command failed or
was rejected by the server. An error message is provided describing the
reason for the failure.

‘ENDNOW-YES’ An “ENDNOW’ request command succeeded.

‘ENDNOW-NO,
[ErrorMessage]’

An “ENDNOW’ request command failed or was rejected by the server. An
error message is provided describing the reason for the failure.

'SERVER COMM-SMTP=
<status>,SYSLOG=<status>,
SNPP=<status>,SNMP=
<status>'

This is the response string format returned for a '?SERVER COM' query
command. Each outbound communication channel reports is status with
a '1' for online or a '0' for offline. The <status> in the string format repre-
sents a '0' or '1' depending on the status of each communication channel.
Example string responses:
// server outbound communication status response
(1=online)

SERVER COMM-SMTP=1,SYSLOG=1,SNPP=1,SNMP=1

// server outbound communication status response
(0=offline)

SERVER COMM-SMTP=0,SYSLOG=0,SNPP=0,SNMP=0

'SERVER COMM-UNKNOWN' This is the response string format returned for a '?SERVER COM' query
command when the master is not connected to the RMS Server and the
actual outbound communication status cannot be determined.

'LICENSE-SERVER=<status>,
ASSET=<status>,
SCHEDULE=<status>'

This is the response string format returned for a '?LICENSE' query com-
mand.
This return string will return the status for the server license and the
room's asset and scheduling license.
The <status> in the string format represents a '0' for not licensed or '1' for
licensed depending on the status of each licensed component.
Example string responses:
// licensing response (1=licensed)

LICENSE-SERVER=1,ASSET=1,SCHEDULE=1

// licensing response (0=unlicensed)

LICENSE-SERVER=0,ASSET=0,SCHEDULE=0

This status string is also automatically sent out (unsolicited) each time
the master establishes a connection to the RMS server.

'LICENSE-UNKNKOWN' This is the response string format returned for a '?LICENSE' query com-
mand when the master is not connected to the RMS server and the
actual license status cannot be determined.
38 RMS - NetLinx Programmer’s Guide

NetLinx Modules
Channels

Levels

Module Definition

DEFINE_MODULE 'RMSEngineMod' mdlRMSEng(vdvRMSEngine,

 dvRMSSocket,

 vdvCLActions).

Where mdlRMSEng is a unique module name.

Touch Panel Pages

This module requires no pages.

RMSEngineMod - Channels

9 Toggle System Power State

27 Set system power to ON

28 Set system power to OFF

100 Run Preset for Current Appointment

248 RMS Server Socket Connected
This channel reflects the state of the actual TCP/IP connection between the master and the RMS Server.

249 RMS Database Online
This channel indicates the status of the RMS Database connection on the RMS server.

250 RMS Server Online
This channel is a composite channel that indicates that the RMS server is online or offline. Both the RMS
server TCP/IP socket must be connected and the RMS Database must be Online for this channel to be
set to the ON state. If one of these conditions is not met, this channel will be set to the OFF state.

251 Dynamic Images Enabled

RMSEngineMod - Levels

1 Current Appointment Index

2 Minutes Remaining In Appointment

3 Next Appointment Index

4 Minutes Until Next Appointment

5 First Appointment Index

6 Last Appointment Index

7 Number of Appointment Remaining today

•vdvRMSEngine: A virtual device for communicating to the RMSEngineMod module

•dvRMSSocket: A socket device for communicating to the RMS server.

•vdvCLActions: A i!-ConnectLinx device number for executing pre-meeting presets.
If you are not using i!-ConnectLinx, pass in a value of 0:0:0.
39RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSRFIDTrackingMod Module
z Commands

z Module Definition

Commands

RMSRFIDTrackingMod listens for the following commands from the vdvRMSEngine device:

Module Definition

The purpose of this module is to synchronize RFID tag changes received from the Anterus RFID Module with
the RMS Server. This module is only needed if using RFID tracking and the Anterus RFID Duet Module.

DEFINE_MODULE 'RMSRFIDTrackingMod'

mdlRMSRFIDTracking(vdvAnterusGateway,vdvRMSEngine)

Where mdlRMSRFIDTracking is a unique module name.

Touch Panel Pages

This module requires no pages.

RMSRFIDTrackingMod - Commands and Descriptions

'RFID INITIALIZE' This command is automatically sent from the RMSEngine on the RMSEngine virtual
device if the RMS server supports RFID tracking.
This command is sent out on each connection to the RMS server.

'DEBUG ON' Enable RMS debugging messages.

'DEBUG OFF' Disable RMS debugging messages.

'VERSION' Send version information to master debug port (master messaging)

If you are deploying multiple instance of RMS to a single NetLinx master, then use
the module "RMSRFIDTrackingMod-Multi" instead of this module. More information
can be found describing the step required to support RFID device tracking with
multiple instances of RMS in the Multi-Instancing RFID Device Tracking in
RMS section on page 75.

•vdvAnterusGateway A virtual device for communicating to the Anterus RFID Module

•vdvRMSEngine A virtual device for communicating to RMSEngineMod module.
40 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSRFIDTrackingMod-Multi Module
z Commands

z Module Definition

Commands

RMSRFIDTrackingMod-Multi listens for the following commands from the vdvRMSEngine device:

Module Definition

The purpose of this module is to synchronize RFID tag changes received from the Anterus RFID Module with
a single instance of RMS in a multi-instance RMS NetLinx program. This module is only needed if using
RFID tracking and the Anterus RFID Duet Module in a multi-instance RMS configuration.

If not deploying multiple instance of RMS to a single NetLinx master, then use the module
"RMSRFIDTrackingMod" instead of this module.

DEFINE_MODULE 'RMSRFIDTrackingMod-Multi' mdlRMSRFIDTracking

(vdvAnterusGateway,vdvRMSEngine,cRFIDReaderAddresses[][])

Where mdlRMSRFIDTracking is a unique module name.

Touch Panel Pages

This module requires no pages.

RMSRFIDTrackingMod-Multi - Commands and Descriptions

'RFID INITIALIZE' This command is automatically sent from the RMSEngine on the RMSEngine virtual
device if the RMS server supports RFID tracking.
This command is sent out on each connection to the RMS server.

'DEBUG ON' Enable RMS debugging messages.

'DEBUG OFF' Disable RMS debugging messages.

'VERSION' Send version information to master debug port (master messaging)

•vdvAnterusGateway: A virtual device for communicating to the Anterus RFID
Module

•vdvRMSEngine: A virtual device for communicating to an instance of
RMSEngineMod module.

•cRFIDReaderAddresses[][]: This parameter should contain an array of strings (a two-
dimensional array) used to identify which Anterus RFID
readers that this module instance is responsible for monitor-
ing and relaying RFID tag information to the RMS server.
Only RFID tags from RFID readers that are defined in this
parameter will be sent to the RMS server. All others will be
filtered out.
Each RFID reader configured in Anterus supports a user-
defined reader address label. It is this reader address label
that should be used and included in the string array for this
module parameter.
For more information on the RFID reader address label,
please refer to the Anterus module documentation.
41RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSUIMod Module
z Commands

z Module Definition

z Touch Panel Pages

z Constants

Commands

RMSUIMod listens for the following commands from the vdvRMSEngine device:

Module Definition

DEFINE_MODULE 'RMSUIMod' mdlRMSUI(vdvRMSEngine,

 dvTp,

 dvTP_Base,

 dvTPWelcome,

 dvTPWelcome_Base,

 RMS_MEETING_DEFAULT_SUBJECT,

 RMS_MEETING_DEFAULT_MESSAGE)

RMSUIMod - Commands and Descriptions

'DFORMAT-DAY/MONTH' Set Date format European format: Day/Month/Year

'DFORMAT-MONTH/DAY' Set Date format US format: Month/Day/Year

'TFORMAT-12 HOUR' Set Time format to 12 hour format: [01-12]:[00-59] [AM,PM]

'TFORMAT-24 HOUR' Set Time format to 24-hour (military) format: [00-23]:[00-59]

'DEBUG-ON' Turn on debug.

'DEBUG-OFF' Turn off debug. (Default)

'VERSION' Send version information to master debug port (master messaging)

•vdvRMSEngine: A virtual device for communicating to RMSEngineMod
RMSEngineMod module

•dvTP: An array of main touch panel devices implementing RMSUIMod.

•dvTP_Base: An array of main touch panel base devices addresses that correspond
with the main touch panel devices defined in the dvTP device array.
This base device array is used to capture keyboard string data events
from the main touch panels.
• If the RMS pages and buttons are defined on the base device

address (Port 1) then the same device array used for the dvTP
parameter can also be used for this parameter.

• If the RMS pages and buttons are defined on a panel port that is not
the base device address, then this parameter will need an array of
the base panel device addresses.

•dvTPWelcome: An array of welcome touch panel devices implementing RMSUIMod.

•dvTPWelcome_Base: An array of welcome touch panel base devices addresses that corre-
spond with the welcome touch panel devices defined in the dvTPWel-
come device array.
This base device array is used to capture keyboard string data events
from the welcome touch panels.
• If the RMS welcome pages and buttons are defined on the base

device address (Port 1) then the same device array used for the
dvTPWelcome parameter can also be used for this parameter.

• If the RMS welcome pages and buttons are defined on a panel port
that is not the base device address, then this parameter will need an
array of the base panel device addresses.
42 RMS - NetLinx Programmer’s Guide

NetLinx Modules
Touch Panel Pages

RMSUIMod requires the following touch panel pages for dvTP:

z Main - user defined room control page.

z rmsSplashPage - panel start-up page

z rmsRoomPage - RMS inside room control panel

RMSUIMod requires the following touch panel pages for dvTPWelcome:

z rmsSplashPage - panel start-up page

z rmsWelcomePage - RMS outside room welcome panel (electronic signage panel)

•RMS_MEETING_
DEFAULT_SUBJECT:

A character array/string that defined the default subject text for meeting
appointments scheduled form the touch panel.

•RMS_MEETING_
DEFAULT_MESSAGE:

A character array/string that defined the default message body text for
meeting appointments scheduled form the touch panel.

All channel and variable text numbers are defined inside the module. If you need to
change them, edit the module and re-compile the module and your program.

RMSUIMod - Touch Panel Pop-Up Pages

Required for dvTp

Popup Page Popup Group

rmsAbout NA

rmsCalendar NA

rmsDoNotDisturb NA

rmsServerOffline NA

rmsHelpQuestion rmsDialogs

rmsHelpRequest rmsDialogs

rmsHelpResponse rmsDialogs

rmsMeetingDoesNotExist rmsDialogs

rmsMeetingEndConfirmation rmsDialogs

rmsMeetingEndWarning rmsDialogs

rmsMeetingExtendWarning rmsDialogs

rmsMeetingInfo rmsDialogs

rmsMeetingRequest rmsDialogs

rmsMeetingRequestFailed rmsDialogs

rmsMessage rmsDialogs

rmsServiceRequest rmsDialogs

rmsDoorbell rmsDoorbell

rmsMonthSelect rmsDropDowns

rmsYearSelect rmsDropDowns

rmsViewSchedule1 rmsViewSchedule

rmsViewSchedule3 rmsViewSchedule

rmsViewSchedule4 rmsViewSchedule
43RMS - NetLinx Programmer’s Guide

NetLinx Modules
Constants

The following constants are defined in the RMSUIMod.axs file:

RMSUIMod - Touch Panel Pop-Up Pages (Cont.)

Required for dvTPWelcome

Popup Page Popup Group

rmsAbout NA

rmsDoNotDisturb NA

rmsServerOffline NA

rmsMeetingDetails rmsDialogs

rmsMeetingDoesNotExist rmsDialogs

rmsMeetingEndConfirmation rmsDialogs

rmsMeetingInfo rmsDialogs

rmsMeetingRequest rmsDialogs

rmsMeetingRequestFailed rmsDialogs

rmsMessage rmsDialogs

rmsViewSchedule1 rmsViewSchedule

rmsViewSchedule3 rmsViewSchedule

rmsViewSchedule4 rmsViewSchedule

RMSUIMod - Constants

Constant Description

__RMS_UI_NAME__ RMS module name.
This constant should not be modified.

__RMS_UI_VERSION__ RMS module version.
This constant should not be modified.

RMS_BEEP_DOORBELL_REQUEST Panel Beep on Doorbell button push from outside welcome touch
panel.
1 = ENABLED / 0 = DISABLED

RMS_BEEP_DOORBELL_RECEIPT Panel Beep on Doorbell signal on in room touch panel.
1 = ENABLED / 0 = DISABLED

RMS_BEEP_PRESET_RUN Panel Beep on Meeting Preset Execute button press from in-room
touch panel.
1 = ENABLED / 0 = DISABLED

RMS_WELCOME_PREP_TIME_MIN Numbers of minutes before meeting start time to prepare for next
meeting.

RMS_WARN_TIME_MIN Number of minutes before meeting ends to display a warning dialog
on the touch panel.

RMS_EXTEND_TIME_MIN Number of minutes to extend meeting end time when the EXTEND
meeting button is pressed from the touch panel.

RMS_G4_USER_SCHEDULE_COLOR_0 Color 1 of 3
Alternating meeting block colors for daily schedule.

RMS_G4_USER_SCHEDULE_COLOR_1 Color 2 of 3
Alternating meeting block colors for daily schedule.

RMS_G4_USER_SCHEDULE_COLOR_2 Color 3 of 3
Alternating meeting block colors for daily schedule.
44 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSWelcomeOnlyUIMod Module
z Commands

z Module Definition

z Touch Panel Pages

z Constants

Commands

RMSWelcomeOnlyUIMod listens for the following commands from the vdvRMSEngine device.

Module Definition

DEFINE_MODULE ' RMSWelcomeOnlyUIMod' mdlRMSUI(vdvRMSEngine,

 dvTPWelcome,

 dvTPWelcome_Base,

 RMS_MEETING_DEFAULT_SUBJECT,

 RMS_MEETING_DEFAULT_MESSAGE)

RMSWelcomeOnlyUIMod - Commands and Descriptions

'DFORMAT-DAY/MONTH' Set Date format European format: Day/Month/Year.

'DFORMAT-MONTH/DAY' Set Date format US format: Month/Day/Year.

'TFORMAT-12 HOUR' Set Time format to 12 hour format: [01-12]:[00-59] [AM,PM].

'TFORMAT-24 HOUR' Set Time format to 24-hour (military) format: [00-23]:[00-59].

'DEBUG-ON' Turn on debug.

'DEBUG-OFF' Turn off debug. (Default).

'VERSION' Send version information to master debug port (master messaging).

•vdvRMSEngine: A virtual device for communicating to the RMSEngineMod module.

•dvTPWelcome: An array of welcome touch panel devices implementing RMSUIMod.

•dvTPWelcome_Base: An array of welcome touch panel base devices addresses that corre-
spond with the welcome touch panel devices defined in the
dvTPWelcome device array.
This base device array is used to capture keyboard string data events
from the welcome touch panels.
• If the RMS welcome pages and buttons are defined on the base

device address (Port 1) then the same device array used for the
dvTPWelcome parameter can also be used for this parameter.

• If the RMS welcome pages and buttons are defined on a panel port
that is not the base device address, then this parameter will need an
array of the base panel device addresses.

•vdvRMSEngine: A virtual device for communicating to RMSEngineMod module.

•RMS_MEETING_
DEFAULT_SUBJECT:

A character array/string that defined the default subject text for meeting
appointments scheduled form the touch panel.

•RMS_MEETING_
DEFAULT_MESSAGE:

A character array/string that defined the default message body text for
meeting appointments scheduled form the touch panel.

All channel and variable text numbers are defined inside the module. If you need to
change them, edit the module and re-compile the module and your program.
45RMS - NetLinx Programmer’s Guide

NetLinx Modules
Touch Panel Pages

RMSWelcomeOnlyUIMod requires the following touch panel pages for dvTP:

z rmsSplashPage - panel start-up page

z rmsWelcomePage - RMS outside room welcome panel (electronic signage panel)

RMSWelcomeOnlyUIMod requires the following touch panel pop-up pages for dvTPWelcome:

Constants

The following constants are defined in the RMSWelcomeOnlyUIMod.axs file:

RMSWelcomeOnlyUIMod - Touch Panel Pop-up Pages

Popup Page Popup Group

rmsAbout NA

rmsDoNotDisturb NA

rmsServerOffline NA

rmsMeetingDetails rmsDialogs

rmsMeetingDoesNotExist rmsDialogs

rmsMeetingEndConfirmation rmsDialogs

rmsMeetingInfo rmsDialogs

rmsMeetingRequest rmsDialogs

rmsMeetingRequestFailed rmsDialogs

rmsMessage rmsDialogs

rmsViewSchedule1 rmsViewSchedule

rmsViewSchedule3 rmsViewSchedule

rmsViewSchedule4 rmsViewSchedule

RMSWelcomeOnlyUIMod - Constants

Constant Description

__RMS_UI_NAME__ RMS module name. This constant should not be modified.

__RMS_UI_VERSION__ RMS module version. This constant should not be modified.

RMS_BEEP_DOORBELL_REQUEST Panel Beep on Doorbell button push from outside welcome touch
panel.
1 = ENABLED / 0 = DISABLED

RMS_BEEP_DOORBELL_RECEIPT Panel Beep on Doorbell signal on in room touch panel.
1 = ENABLED / 0 = DISABLED

RMS_BEEP_PRESET_RUN Panel Beep on Meeting Preset Execute button press from in-room
touch panel.
1 = ENABLED / 0 = DISABLED

RMS_WELCOME_PREP_TIME_MIN Numbers of minutes before meeting start time to prepare for next
meeting.

RMS_WARN_TIME_MIN Number of minutes before meeting ends to display a warning dialog
on the touch panel.

RMS_EXTEND_TIME_MIN Number of minutes to extend meeting end time when the EXTEND
meeting button is pressed from the touch panel.

RMS_G4_USER_SCHEDULE_COLOR_0 Color 1 of 3
Alternating meeting block colors for daily schedule.

RMS_G4_USER_SCHEDULE_COLOR_1 Color 2 of 3
Alternating meeting block colors for daily schedule.

RMS_G4_USER_SCHEDULE_COLOR_2 Color 3 of 3
Alternating meeting block colors for daily schedule.
46 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSHelpUIMod Module
z Commands

z Module Definition

z Touch Panel Pages

Commands

RMSHelpUIMod listens for the following commands from the vdvRMSEngine device.

Module Definition

DEFINE_MODULE 'RMSHelpUIMod' mdlRMSHelpUI(vdvRMSEngine,

 dvTp,

 dvTP_Base)

Touch Panel Pages

RMSHelpUIMod requires the following touch panel pages for dvTP:

z Main - user defined room control page.

z rmsSplashPage - panel start-up page

z rmsRoomPage - RMS inside room control panel

RMSHelpUIMod - Commands and Descriptions

'DFORMAT-DAY/ MONTH' Set Date format European format: Day/Month/Year

'DFORMAT-MONTH/ DAY' Set Date format US format: Month/Day/Year

'TFORMAT-12 HOUR'
[AM,PM]

Set Time format to 12 hour format: [01-12]:[00-59]

'TFORMAT-24 HOUR'
[00-23]:[00-59]

Set Time format to 24-hour (military) format:

'DEBUG-ON' Turn on debug.

'DEBUG-OFF' Turn off debug. (Default)

'VERSION' Send version information to master debug port (mastermessaging)

•vdvRMSEngine: A virtual device for communicating to RMSEngineMod.

•dvTP: An array of main touch panel devices implementing RMSHelpUIMod.

•dvTP_Base: An array of main touch panel base devices addresses that correspond with
the main touch panel devices defined in the dvTP device array.
This base device array is used to capture keyboard string data events from
the main touch panels.
• If the RMS pages and buttons are defined on the base device address (Port

1) then the same device array used for the dvTP parameter can also be
used for this parameter.

• If the RMS pages and buttons are defined on a panel port that is not the
base device address, then this parameter will need an array of the base
panel device addresses.

All channel and variable text numbers are defined inside the module. If you need to
change them, edit the module and re-compile the module and your program.
47RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSHelpUIMod requires the following touch panel pop-up pages for dvTp:

RMSNLDeviceMod Module
z Commands

z Module Definition

Commands

RMSNLDeviceMod listens for the following commands from the vdvRMSEngine device.

Module Definition

DEFINE_MODULE 'RMSNLDeviceMod' mdlNLD(dvMonitoredDevices,

 vdvRMSEngine)

Where mdlNLD is a unique module name.

Touch Panel Pages

This module requires no pages.

RMSHelpUIMod - Touch Panel Pop-up Pages

Popup Page Popup Group

rmsAbout NA

rmsServerOffline NA

rmsHelpQuestion rmsDialogs

rmsHelpRequest rmsDialogs

rmsHelpResponse rmsDialogs

rmsServiceRequest rmsDialogs

rmsMessage rmsDialogs

rmsDoorbell rmsDialogs

RMSNLDeviceMod - Commands and Descriptions

'VERSION’ Send version information to master debug port (master messaging)

•dvMonitoredDevices: An array of NetLinx-connected devices to monitor.

•vdvRMSEngine: A virtual device for communicating to the RMSEngineMod module.
48 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSProjectorMod Module
z Commands

z Strings

z Channels

z Module Definition

Commands

RMSProjectorMod listens for the following commands from the vdvRMSEngine device.

RMSProjectorMod listens for the following commands from the vdvProjModule device.

This set of commands is intended to provide monitoring for Duet-based modules.

Strings

RMSProjectorMod listens for the following strings from the vdvProjModule device.

RMSProjectorMod - Commands and Descriptions (from vdvRMSEngine device)

'DEV INFO-
[DPS],[Name],[Man],[Model]'

Set device information for device monitoring.
DPS must be in string form (ex: '5001:1:0').

'DEV NAME-[DPS],[Name]' Set device name for device monitoring.
DPS must be in string form (ex: '5001:1:0').

'COMM TO-[DPS],[Timeout]' Set the device communication timeout to Timeout.
Timeout is in 1/10-second increments.
Sending a value of zero will disable the device communication
timeout and the registration of the device communicating
parameter.

'DEV PWR-[DPS],[State]' Set the device power state. DPS must be in string form
(ex: '5001:1:0'). State must be 1 or 0.

'LAMP HOURS-[DPS],[Value]' Set the projector lamp hours. DPS must be in string form
(ex: '5001:1:0').

'POWER FAIL ON-[DPS]' Set power failure detection on. DPS must be in string form
(ex: '5001:1:0').

'POWER FAIL OFF-[DPS]' Set power failure detection off. DPS must be in string form
(ex: '5001:1:0').

'VERSION' Send version information to master debug port
(master messaging)

RMSProjectorMod - Commands and Descriptions (from vdvProjModule device)

'LAMPTIME-[Value]' Sets the projector lamp hours device information for device
monitoring.
Example: 'LAMPTIME-200'

RMSProjectorModStrings and Descriptions

'POWER=[Power State]' Set the system power state. [PowerState] should be 0 for off and
1 for on.
Example: 'POWER=1'

'LAMPTIME=[Value]' Set the projector lamp hours.
Example: 'LAMPTIME=200'

'MODEL=[Model]' Set the model number.

'MANUFACTURER=[Manufacturer]' Set the manufacturer name.
49RMS - NetLinx Programmer’s Guide

NetLinx Modules
Any string received from the physical device (dvProj) is an indication that the device is communicating.

As long as a string is received within the period set by the communication timeout command, the module will
notify RMS that the device is communicating. See the Communication Timeout command for more details.

Channels

RMSProjectorMod watches for these channels on the vdvProjModule device:

Module Definition

DEFINE_MODULE 'RMSProjectorMod' mdlProj1(vdvProjModule,

 dvProj,

 vdvRMSEngine)

Where mdlProj1is a unique module name.

Touch Panel Pages

This module requires no pages.

Reporting for Multiple Bulb Projectors (Limited Support)
The following section describes how to register multiple lamp parameters, in order to allow reporting on
multiple-bulb projectors. Support for this feature requires some custom coding, as described below:

RMSMain.axi File Changes

The following changes must be made to the RMSMain.axi file, to register multiple lamp parameters:

RMSRegisterStockNumberParam(DVPROJ, 'Lamp Hours A1', RMS_UNIT_HOURS, RMS_TRACK_CHANGES,

 1800, RMS_COMP_GREATER_THAN, RMS_STAT_MAINTENANCE,

 RMS_PARAM_CANNOT_RESET, 0, RMS_PARAM_SET, slRMSPROJECTORLampHoursA1, 0, 0)

RMSRegisterStockNumberParam(DVPROJ, 'Lamp Hours A2', RMS_UNIT_HOURS, RMS_TRACK_CHANGES,

 1800, RMS_COMP_GREATER_THAN, RMS_STAT_MAINTENANCE,

 RMS_PARAM_CANNOT_RESET, 0, RMS_PARAM_SET, slRMSPROJECTORLampHoursA2, 0, 0)

If using a Duet module, strings from the physical device are captured inside the Duet
module are not bubbled up to the STRING data event.
For Duet devices, instead of monitoring string traffic on physical device, Channel 252
(DATA_INITIALIZED) is used to monitor device communication status.

RMSProjectorMod - Channels

9 Toggle System Power State

27 Set system power to ON

28 Set system power to OFF

252 Device Communication/Initialized Status (Duet Modules)

254 Power failure

255 Power Status

•vdvProjModule: A virtual device for communicating to RMSProjectorMod. This can be the
same virtual device used to communicate with an InConcert module or a
physical projector. If controlling the projector or display using an IR device,
pass the physical device to this parameter.

•dvProj: A physical projector or socket device to which the projector is connected.

•vdvRMSEngine: A virtual device for communicating to RMSEngineMod module.
50 RMS - NetLinx Programmer’s Guide

NetLinx Modules
The following code shows how Code Crafter originally created the lamp hour parameter:

// RMSRegisterDeviceNumberParam(DVPROJ,'Lamp Hours A1',

// 1800,RMS_COMP_GREATER_THAN,RMS_STAT_MAINTENANCE,

// FALSE,0,

// RMS_PARAM_SET,slRMSPROJECTORLampHoursA1,0,0)

// RMSRegisterDeviceNumberParam(DVPROJ,'Lamp Hours A2',

// 1800,RMS_COMP_GREATER_THAN,RMS_STAT_MAINTENANCE,

// FALSE,0,

// RMS_PARAM_SET,slRMSPROJECTORLampHoursA2,0,0)

RMSProjectorMod Module Changes

The following changes must be made to the RMSProjectorMod module.

There are two functions that must be changed.

The first runs from line 231 to line 235:
(***************************************)

(* Call Name: RMSDevMonSetLampPower *)

(* Function: Set Lamp Power *)

(* Param: 1=On, 0=Off *)

(* Return: None *)

(***************************************)

DEFINE_FUNCTION RMSDevMonSetLampPower(CHAR bState)

{

 // Are we counting? if not, who cares? This is for lamp counting only

 // DeviceVase.axi takes care of power

 IF (bCountLampHours == FALSE)

 RETURN;

 // Did we register yet? If not, do it now

 // IF (bIgnoreLampHours) //comment this out

 // { bIgnoreLampHours = FALSE

 // RMSDevMonRegisterCallback()

 // send_string 0,'did not'

 // }

 // Did the state change

 IF (bState > 0)

 {

 // Start Timer & offset timer to think it started lMinuteRemainder minutes before now

 RMSTimerStart()

 RMSTimerResetStartTime(0,TYPE_CAST(0-lMinuteRemainder),0)

 }

 ELSE

 {

 // Remember minute mark and stop timer

 IF (RMSTimerIsRunning())

 {

 lMinuteRemainder = RMSTimerGetMinutes()

 lMinuteRemainder = lMinuteRemainder % 60

 }

 RMSTimerStop();

 }

}

51RMS - NetLinx Programmer’s Guide

NetLinx Modules
The second runs from line 270 to line 274:
(***************************************)

(* Call Name: RMSDevMonSetLampHours *)

(* Function: Set Lamp Hours *)

(* Param: # of Hours *)

(* Return: None *)

(***************************************)

DEFINE_FUNCTION RMSDevMonSetLampHours(SLONG slHours)

{

 // Let the comm module handle lamp hours

 // Also, kill timer, we will not be using it anymore...

 bCountLampHours = FALSE

 RMSTimerStop();

 // Did we register yet? If not, do it now

 // IF(bIgnoreLampHours) //comment this out

 // {

 // bIgnoreLampHours = FALSE

 // RMSDevMonRegisterCallback()

 // send_string 0,'did it'

 // }

 // bounds check the lamp hours value

 // note if erroneous lamp time is received from Duet module, it will be a Duet min
 // int value (-2147483648)

 IF((slHours >= RMS_LAMP_TIME_LOWER_BOUNDS) && (slHours <= RMS_LAMP_TIME_UPPER_BOUNDS))

 {

 // Is this a change?

 IF (slHours <> slLampHours)

 {

 slLampHours = slHours

 RMSChangeNumberParam(dvRealDevice, RMS_DEVICE_LAMP, RMS_PARAM_SET, slLampHours)

 }

 }

}

Remember, when using the modified module, you must register lamp hours in the above manner.

It may be a good principle to keep the modified module with a different name, and then include that named
module when using multiple lamp projectors in the DEFINE_MODULE section of the code.
52 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSTransportMod Module
z Commands

z Strings

z Channels

z Module Definition

Commands

RMSTransportMod listens for the following commands from the vdvRMSEngine device.

Strings

RMSTransportMod listens for the following strings from the vdvVCRModule device.

Any string received from the physical device (dvProj) is an indication that the device is communicating.

As long as a string is received within the period set by the communication timeout command, the module will
notify RMS that the device is communicating. See the Communication Timeout command for more details.

RMSTransportMod - Commands and Descriptions

'DEV INFO-
[DPS],[Name],[Man],[Model]'

Set device information for device monitoring.
DPS must be in string form (ex: '5001:1:0').

'DEV NAME-[DPS],[Name]' Set device name for device monitoring.
DPS must be in string form (ex: '5001:1:0').

'COMM TO-[DPS],[Timeout]' Set the device communication timeout to Timeout.
Timeout is in 1/10-second increments.
Sending a value of zero will disable the device communication
timeout and the registration of the device communicating parameter.

'DEV PWR-[DPS],[State]' Set the device power state. DPS must be in string form
(ex: '5001:1:0').
State must be 1 or 0.

'XPORT STATE-[DPS],[State]' Set the transport state. DPS must be in string form
(ex: ''5001:1:0').
State should be a value 1-8, Play=1, Stop=2, etc…

'POWER FAIL ON-[DPS]' Set power failure detection on. DPS must be in string form
(ex: '5001:1:0').

'POWER FAIL OFF-[DPS]' Set power failure detection off. DPS must be in string form
(ex: '5001:1:0').

'VERSION’ Send version information to master debug port (master messaging)

RMSTransportMod - Strings and Descriptions

'POWER=[Power State]' Set the system power state. [PowerState] should be 0 for off and 1
for on.

Example: 'POWER=1'

'TRANSPORT=[Transport State]' Set the system power state. Transport State can be 2 for Stop or
any other value for a non-stopped condition.
Any value other than 2 will enable the run-time counter.

'MODEL=[Model]' Set the model number.

'MANUFACTURER=[Manufacturer]' Set the manufacturer name.

If using a Duet module, strings from the physical device are captured inside the Duet
module are not bubbled up to the STRING data event.
For Duet devices, instead of monitoring string traffic on physical device, Channel 252
(DATA_INITIALIZED) is used to monitor device communication status.
53RMS - NetLinx Programmer’s Guide

NetLinx Modules
Channels

RMSTransportMod watches for these channels on the physical device, and for Duet modules on the virtual
device:

Module Definition

DEFINE_MODULE 'RMSTransportMod' mdlVCR1(vdvVCRModule,

 dvVCR,

 vdvRMSEngine)

Where mdlVCR1 is a unique module name.

Touch Panel Pages

This module requires no pages.

RMSTransportMod - Channels

9 toggle System Power State

27 Set system power to ON

28 Set system power to OFF

241 Set transport state to play.

242 Set transport state to stop.

243 Set transport state to pause.

244 Set transport state to fast forward.

245 Set transport state to rewind.

246 Set transport state to search forward.

247 Set transport state to search reverse.

248 Set transport state to record.

252 Device Communication/Initialized Status (Duet Modules)

254 Power failure

255 Power Status

•vdvVCRModule: A virtual device for communicating to RMSTransportMod.
This can be the same virtual device used to communicate with an InConcert
module or the physical device. If using a SYSTEM_CALL for this device,
pass the physical device to this parameter.

•dvVCR: A physical device or socket device to which the transport device is
connected.

•vdvRMSEngine: A virtual device for communicating to the RMSEngineMod module.
54 RMS - NetLinx Programmer’s Guide

NetLinx Modules
RMSBasicDeviceMod Module
z Commands

z Strings

z Channels

z Module Definition

Commands

RMSBasicDeviceMod listens for the following commands from the vdvRMSEngine device.

Strings

RMSBasicDeviceMod listens for the following strings from the vdvModule device.

Any string received from the physical device (dvProj) is an indication that the device is communicating.

As long as a string is received within the period set by the communication timeout command, the module will
notify RMS that the device is communicating. See the Communication Timeout command for more details.

RMSBasicDeviceMod - Commands and Descriptions

'DEV INFO-[DPS],
[Name],[Man],[Model]'

Set device information for device monitoring. DPS must be in string form
(ex: '5001:1:0').

'DEV NAME-
[DPS],[Name]'

Set device name for device monitoring. DPS must be in string form
(ex: '5001:1:0').

'COMM TO-
[DPS],[Timeout]'

Set the device communication timeout to Timeout.
Timeout is in 1/10-second increments.
Sending a value of zero will disable the device communication timeout and the
registration of the device communicating parameter.

'DEV PWR-
[DPS],[State]'

Set the device power state. DPS must be in string form (ex: '5001:1:0').
State must be 1 or 0.

'POWER FAIL ON-[DPS]' Set power failure detection on. DPS must be in string form (ex: '5001:1:0').

'POWER FAIL OFF-
[DPS]'

Set power failure detection off. DPS must be in string form (ex: '5001:1:0').

'VERSION' Send version information to master debug port (master messaging)

RMSBasicDeviceMod - Strings and Descriptions

'POWER=[Power State]' Set the system power state. [PowerState] should be 0 for off and 1
for on.
Example: 'POWER=1'

'MODEL=[Model]' Set the model number.

'MANUFACTURER=[Manufacturer]' Set the manufacturer name.

If using a Duet module, strings from the physical device are captured inside the Duet
module are not bubbled up to the STRING data event.
For Duet devices, instead of monitoring string traffic on physical device, Channel 252
(DATA_INITIALIZED) is used to monitor device communication status.
55RMS - NetLinx Programmer’s Guide

NetLinx Modules
Channels

RMSBasicDeviceMod watches for these channels on the vdvModule device.

Module Definition

DEFINE_MODULE 'RMSBasicdeviceMod' mdBasicDev1(vdvModule,

 dvDevice,

 vdvRMSEngine)

Where mdlBasicDev1 is a unique module name.

Touch Panel Pages

This module requires no pages.

RMSSldProjMod Module
z Commands

z Channels

z Module Definition

Commands

RMSSldProjMod listens for the following commands from the vdvRMSEngine device.

RMSBasicDeviceMod - Channels

9 toggle System Power State

27 Set system power to ON

28 Set system power to OFF

252 Device Communication/Initialized Status (Duet Modules)

254 Power failure

255 Power Status

•vdvModule: A virtual device for communicating to RMSBasicDeviceMod.
This can be the same virtual device used to communicate with an InConcert
module or a physical device.
If controlling the device using an IR device, pass the physical device to this
parameter.

•dvDevice: A physical device or socket device to which the virtual device is connected.

•vdvRMSEngine: A virtual device for communicating to RMSEngineMod module.

RMSSldProjMod - Commands and Descriptions

'DEV INFO-[DPS],[Name],
[Man],[Model]'

Set device information for device monitoring.
DPS must be in string form (ex: '5001:1:0').

'DEV NAME-[DPS],[Name]' Set device name for device monitoring.
DPS must be in string form (ex: '5001:1:0').

'VERSION' Send version information to master debug port (master messaging).
56 RMS - NetLinx Programmer’s Guide

NetLinx Modules
Channels

RMSSldProjMod watches for these channels on the dvSldProj device.

Module Definition

DEFINE_MODULE 'RMSSldProjMod' mdlSldProj1(dvSldProj,

 vdvRMSEngine)

Where mdlSldProj1 is a unique module name.

Touch Panel Pages

This module requires no pages.

RMSSrcUsageMod Module
z Commands

z Channels

z Module Definition

Commands

RMSSrcUsageMod listens for the following commands from the vdvRMSEngine device.

Channels

RMSSrcUsageMod watches for these channels on the vdvConnectLinx device.

RMSSrcUsageMod will also listen for i!-ConnectLinx registration of custom actions and attempt to determine
if they represent source selects.

RMSSldProjMod - Channels

5 Slide Projector Power State

•dvSldProj: A physical device to which the slide projector is connected.

•vdvRMSEngine: A virtual device for communicating to RMSEngineMod module.

RMSSrcUsageMod - Commands and Descriptions

'MULTISOURCE-[State]' Set the multi-source tracking state. State can be ON or OFF.
The default is OFF.

'VERSION’ Send version information to master debug port (master messaging)

RMSSrcUsageMod - Channels

1001 Power On 1021 Rack Computer Select

1002 Power Off 1022 Aux PC Select

1011 VCR Select 1023 Aux Video Select

1012 HI8 VCR Select 1024 Slide Select

1013 Umatic VCR Select 1025 Digital Media Player Select

1014 DVD Select 1041 Music Select

1015 Laser Disc Select 1042 CD Select

1016 TV/DVD/Cable Select 1043 Cassette Select

1017 Video Conference Select 1044 DAT Select

1018 Document Camera Select 1045 Mini Disc Select

1019 Room Camera Select 1046 Aux Audio Select

1020 Whiteboard Select 1047 Digital Audio Player Select
57RMS - NetLinx Programmer’s Guide

NetLinx Modules
Any custom action registered with a name that starts with "Select " is assumed to be a custom source.
RMSSrcUsageMod will register this source name with the RMS server and treat the associated channel as a
source select channel.

For more information on i!-ConnectLinx programming, refer to the i!-ConnectLinx help file installed with i!-
ConnectLinx as part of the RMS SDK.

Module Definition

DEFINE_MODULE 'RMSSrcUsageMod' mdlSrcUsage(vdvRMSEngine,

 vdvCLActions)

Where mdlSrcUsage is a unique module name.

Touch Panel Pages

This module requires no pages.

Anterus Duet Module
The purpose of this module is to monitor and manage Anterus RFID Tag readers and Anterus RFID Tags. If
using RFID tracking in conjunction with RMS, this module is required along with the RMSRFIDTracking
NetLinx module.

The Anterus Duet module is not included in the RMS SDK distribution but may be acquired directly from the
AMX website.

For programming details on the Anterus Duet module, please consult the documentation provided with the
module.

Module Definition

DEFINE_MODULE 'AMX_Anterus_Comm_dr1_0_0' mdlAnterusDuetMod(vdvAnterusGateway,

dvAnterusReader1)

•vdvRMSEngine: A virtual device for communicating to RMSEngineMod module.

•vdvCLActions: A i!-ConnectLinx device number for monitoring source selection.

Only one instance of the Anterus Duet Module should be defined in your NetLinx
program.
This module is intended to operate as a single instance and does not support multiple
instances on a single NetLinx master.
Multiple instances of RMS can communicate with a single instance of the Anterus
Duet Module using the RMSRFIDTrackingMod-Multi module.
For more information see the RMSRFIDTrackingMod-Multi Module section on
page 41

•vdvAnterusGateway: A virtual device for communicating to the Anterus RFID Module

•dvAnterusReader1: The Anterus RFID reader device for the first reader instance.

Additional RFID readers must be registered to the Anterus Duet module using the
'PROPERTY-Identifiers' command. Please consult the Anterus Duet module
documentation for more information.
58 RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
i!-ConnectLinx

Overview
i!-ConnectLinx™ is a framework that allows you to expose NetLinx™ actions that can be utilized by other
user interfaces or processes outside the NetLinx Control System. For instance, i!-ConnectLinx can be
programmed to expose source select functions and i!-ConnectLinx compatible technologies, such as RMS, can
use this information to allow the source selects to be executed as a scheduled event.

i!-ConnectLinx also provides a mechanism to request actions to be executed on the NetLinx Control System.
Once a process outside the NetLinx Control System has obtained the action list, the process can then make a
request to i!-ConnectLinx to execute that action. i!-ConnectLinx handles this request and makes this request
available to the NetLinx program for execution.

i!-ConnectLinxEngineMod, is the main i!-ConnectLinx module that handles exposing and executing action
requests, see the Module section on page 66. To support i!-ConnectLinx, you simply include this module in
your program, define your actions and write programming to support those actions.

The i!-ConnectLinxEngineMod module makes the list of actions available to other processes, executes their
requests, and provides your program with a push when an action needs to be executed.

Using i!-ConnectLinx
Little work is required to add i!-ConnectLinx to your existing NetLinx code. i!-ConnectLinx is implemented
as a NetLinx module. Adding the module definition and all its parameters to your code is all that is required.

In order to use i!-ConnectLinx, you need to program and define a series of actions in the NetLinx Control
System. The key to the i!-ConnectLinx engine is the virtual device, vdvCLActions. For additional
information reference the Module section on page 66. Support the actions you want executed remotely using
this virtual device.

Think of the virtual device, vdvCLActions, as a touch panel. Normally, you write your NetLinx program to
respond to certain push channels from a touch panel; i!-ConnectLinx is exactly the same. Let’s say you want to
provide the user with the ability to play and stop a VCR. Imagine you have two touch panel buttons that do
these functions; write code that responds to the pushes:

BUTTON_EVENT[TP,1] (* VCR Play *)

{

 PUSH:

 {

 PULSE[VCR,1]

 }

}

BUTTON_EVENT[TP,2] (* VCR Stop *)

{

 PUSH:

 {

 PULSE{VCR,2]

 }

}

59RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
To expose these actions using i!-ConnectLinx, write the same code substituting the touch panel device for your
i!-ConnectLinx virtual device:

BUTTON_EVENT[vdvCLActions,1] (* VCR Play *)

{

 PUSH:

 {

 PULSE[VCR,1]

 }

}

BUTTON_EVENT[vdvCLActions,2] (* VCR Stop *)

{

 PUSH:

 {

 PULSE{VCR,2]

 }

}

When the i!-ConnectLinx engine gets a request to play the VCR, i!-ConnectLinx will "push" the button of the
virtual device just like a user pushes a button on a touch panel. There is now only one thing left to do: Tell the
user which actions are which.

In order to expose an action for execution via i!-ConnectLinx, you need to support the programming for the
action, as we have just seen, and you need to tell i!-ConnectLinx what that action is.

To specify the name of an action, send a command to the i!-ConnectLinx virtual device describing the name of
a given channel code. To specify the names of the actions in the above example, you would add some code like
this:

DATA_EVENT[vdvCLActions]

{

 ONLINE:

 {

 (* Setup actions *)

 (* VCR Play *)

 SEND_COMMAND vdvCLActions,"'ADD ACTION-1,VCR Play"

 (* VCR Stop *)

 SEND_COMMAND vdvCLActions,"'ADD ACTION-2,VCR Stop' "

}

Once i!-ConnectLinx receives these commands, it stores this information in an XML file that can be used by
i!-ConnectLinx compatible technologies to browse available actions.

In addition to specifying the name of an action, you can also supply a help string and a folder name. The help
string helps a user understand the intent of the action more clearly. The folder name allows you to organize the
actions in a tree view so that actions are more easily browsed.
60 RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
Standard Actions
So far, i!-ConnectLinx has handled custom actions where each action is likely to be different from system to
system. In the Using i!-ConnectLinx example on page 59, action 1 played the VCR. However, in another
system, it is very unlikely that action 1 plays the VCR.

i!-ConnectLinx uniquely identifies each action list. Once an i!-ConnectLinx compatible technology programs
itself to execute an action on a system, it also stores a copy of the system identifier from the action list. This
identifier is sent to i!-ConnectLinx along with this action execution request.

If the action identifier does not match the i!-ConnectLinx system that received the request, the action is not
executed. This eliminates any ambiguity that may exist, since each system’s action 1 may be different.

i!-ConnectLinx supports standard actions. Standard actions are actions defined by AMX and supported
natively by i!-ConnectLinx.

When adding actions to i!-ConnectLinx, it is best to use the standard action if it is available. That way, the
action can be executed regardless of which system the i!-ConnectLinx compatible technology was
programmed to control.

The list of standard actions are listed in the i!-ConnectLinxStdFunctionList.xls file. The standard actions ID
are the same as the channel number used to execute the action.

For instance, VCR Select has an ID of 1011 so the programming to support this standard action is:

BUTTON_EVENT[vdvCLActions,1011] (* VCR Select *)

{

 PUSH:

 {

 // Switch the projector and switcher to select the VCR

 }

}

To add a standard action, look up the action ID in the Standard Function List file, and send that in a send
command to i!-ConnectLinx to tell it you want to support that action.

To change the above example to standard action:

1. Lookup VCR Play and VCR Stop in the Standard Function List.

2. Find their IDs. VCR Play is 1131, and VCR Stop is 1132.

3. Send the IDs to i!-ConnectLinx:

DATA_EVENT[vdvCLActions]

{

 ONLINE:

 {

 (* Setup actions *)

 (* VCR Play *)

 SEND_COMMAND vdvCLActions,"'ADD STD-1131'"

 (* VCR Stop *)

 SEND_COMMAND vdvCLActions,"'ADD STD-1132'"

}

Additionally, change the two BUTTON_EVENTs to trigger for channels 1131 and 1132 instead of 1 and 2.

There are other syntax’s of the add standard action command that allow you add multiple actions at a time. The
‘&’ character can be used to signify "AND" and the ‘-‘ character can be used to signify "through".

Since many of the standard actions are related, they can also be added by macros. A macro is a list of one or
more standard actions. In the case of a VCR, the full set of transports are needed, not just Play and Stop. Also,
if the VCR exists in the system then there is likely a way to select the VCR as the active source. Therefore, the
"vcr" macro includes the VCR source select and the standard transports. To load a set of actions by macro,
simply send a command to i!-ConnectLinx with the macro you want added.
61RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
Example:

DATA_EVENT[vdvCLActions]

{

 ONLINE:

 {

 (* Setup actions *)

 (* VCR Select and Play-Record *)

 SEND_COMMAND vdvCLActions,"'ADD MACRO-vcr'"

}

For a complete list of macros, see the i!-ConnectLinxStdFunctionList.xls file.

A common method for programming i!-ConnectLinx is to simply register standard actions and respond to the
actions by "DO_PUSH"ing an existing button on the touch panel.

Example:

BUTTON_EVENT[vdvCLActions,1011](* VCR Select *)

{

 PUSH:

 DO_PUSH(dvTP,11) (* Button 11 on dvTP selects VCR *)

}

To make programming i!-ConnectLinx easier, the i!-ConnectLinxStdFunctionList.xls file includes an
i!-ConnectLinx Code Generator page.

On this page, you can enter the i!-ConnectLinx device, the Touch Panel device and the Touch Panel buttons for
each standard action.

The code generator will create an Include (AXI) file that contains the necessary code to register and respond to
the selected actions. Optionally, the code generator can include the DEFINE_MODULE statement for
i!-ConnectLinx.

Once the Include file is created, you will need to include this file in your main program with an #INCLUDE
statement and make sure the i!-ConnectLinx and Touch Panel devices are defined.

See the i!-ConnectLinxStdFunctionList.xls file for more details.

Action Arguments
i!-ConnectLinx supports action arguments to supply additional information with each action. For instance, if
you wanted to support an action to set the program volume, the user needs to supply a volume level. This is
accomplished using arguments.

Each action can support zero or more arguments. Each argument can be one of the following types:

z Number – A single number from –32767 to 32767. You can define the minimum value, maximum
value, desired step, and a default value. The user is presented with a text box in which to enter this
number.

z Level – Similar to a Number argument, only the user is presented with a slider to enter the level.

z String – A string. You can define the minimum length, maximum length, and default value. The
user is presented with a text box to enter this string.

z Enumeration – A list or enumeration of values from which the user may choose. The user is
presented with a drop down list to choose and value from.

Each argument is numbered in the order they are added. Arguments are added by using the 'ADD NARG', 'ADD
LARG', 'ADD SARG', and 'ADD EARG' commands.

When an i!-ConnectLinx compatible technology requests an action with arguments to be executed, the
argument values are passed to i!-ConnectLinx.
62 RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
i!-ConnectLinx then posts the argument values as levels for number and level arguments, and strings for string
and enumeration arguments. These values can be retrieved by using LEVEL_EVENTs and DATA_EVENTs in
your program and must be saved. Then, when an action request is triggered via a BUTTON_EVENT, you can
retrieve these argument values and use them (as appropriate) for the action to be executed.

Each argument is provided an ID at the time it is added. The ID’s start at one and are numbered sequentially to
each argument as they are added. When
i!-ConnectLinx posts the argument value, it supplies the ID number as well. For numbers and levels, this ID is
the level number to which the argument is posted. For strings and enumerations, this ID is included in the
string that posts the argument value.

For an example, see the i!-ConnectLinxStandardFunctionShell.axi file.

Action Persistence and Distribution
i!-ConnectLinx stores the supported actions in a XML file called i!-ConnectLinx.xml located in the
doc:\user\connectlinx directory. All action information is stored in this file. i!-ConnectLinx compatible
technologies retrieve this file directly from the NetLinx Master.

It may not always be practical to keep all the i!-ConnectLinx action list files on the NetLinx Master. For
instance, in a corporate environment with 20 NetLinx Masters in various conference rooms, a user outside the
company needs to have direct access to each NetLinx Master through the firewall in order to download the
files. Additionally, each NetLinx Master needs it’s own DNS entry, so users do not have to remember an IP
Address.

To simplify action list management, i!-ConnectLinx compatibly technologies support an action list index file
format. This index file lists the names of various files and a URL where the file can be retrieved. This allows
you to move all the action list files from the NetLinx Masters to a web server for easy retrieval. Place this index
file in a directory called connectlinx off the root directory of the web server and name it i!-ConnectLinx.xml.
However, it can contain links to any URL with any file name in any folder.

In the above example, the IT department might collect all the action list files and place them in the connectlinx
directory of the company’s web server. Each file should be renamed to reflect the room that the action list is
for. Then a web developer should edit the supplied i!-ConnectLinxList.xml file to reflect the names and URL’s
of each of these files and rename it to i!-ConnectLinx. Now anyone can retrieve an action list for the
company’s system by pointing to the company’s main web address and selecting a room file from the list.

If desired, the action list index file can be viewed in an HTML browser by using an eXtensible Style Language
file. A web developer can make any adjustments to the XSL file so the index file has the look of the company’s
web site when viewed in an HTML browser. A sample XSL file, i!-ConnectLinxList.xsl, is supplied with i!-
ConnectLinx and should be placed in the same directory on the web server as the index file.

The URL contained in the index file can point to an additional index file to allow for tree style navigation. For
instance, the main file might list cities where the company has offices, which point to an index file for each
city. Each city index file might contain a list of buildings and point to building index files. Then each building
index file contains the list of rooms in that building and points to the actual action list for each room.

International Issues / Localization
Localization is the process by which an application is adapted to a locale, and describes a user’s environment
or geographical location.

i!-ConnectLinx provides the standard action name, help string, and folder names for all the standard actions.
This information is built directly into the i!-ConnectLinx module. If English is not the primary language for
the room, the standard action text can be changed.

The standard action text can be stored in a file called i!-ConnectLinxStdText.xml located in the
doc:\user\connectlinx directory.

When a standard action is added, the text from this file is used for the action name, the help string and folder
names.

The i!-ConnectLinxStdText.xml can be created in two ways. The i!-ConnectLinxStdTextTemplate.xml file
can be altered directly and saved as i!-ConnectLinxStdText.xml in the doc:\user\connectlinx directory.
However, this file is difficult to edit in a standard text editor so an XML file editor is recommended.

Alternatively, the i!-ConnectLinxStdText.xml file can be created using the
i!-ConnectLinxEngineStdTextWriter.axs file.
63RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
To change the language:

1. Open this file in NetLinx Studio2

2. Alter the text to support the language you choose.

3. Compile and download this file to a NetLinx Master.

The i!-ConnectLinxStdText.xml is written out to the doc:\user\connectlinx directory.

Once this file has been created once, it can be FTP’d to the NetLinx Master and placed in the
doc:\user\connectlinx directory. When i!-ConnectLinx starts up, the text is read from this file and used for all
standard actions.

Programming
i!-ConnectLinx appears on the NetLinx bus as a NetLinx device. This device has 1 port with channels, levels,
commands and strings like most other devices.

Channels

i!-ConnectLinx supports the following channels:

Levels

i!-ConnectLinx supports the following levels:

Commands

i!-ConnectLinx supports the following out-bound commands (Master to device).

The commands are sent in the standard Send_Command format:

SEND_COMMAND dvMP, "'SET ROOM NAME-Tesla'"

SEND_COMMAND dvMP, "'ADD MACRO-vcr'"

i!-ConnectLinx Channels

All Action to be executed for this action ID.

i!-ConnectLinx Levels

All Action number and level arguments

i!-ConnectLinx Commands

'SET ROOM INFO-[Room
Name],[Room Location],
[Room Owner]'

Sets the room name, room location, and room owner to be displayed in the
action list file.

'SET ROOM NAME-
[Room Name]'

Sets the room name to be displayed in the action list file.

'SET ROOM LOCATION-
[Room Location]'

Sets the room location to be displayed in the action list file.

'SET ROOM OWNER-
[Owner Name]'

Sets the room owner to be displayed in the action list file.

'ADD MACRO-[Macro Name]' Adds a group of standard actions. See i!-ConnectLinxStdFunction-
List.xls for a complete list of macro names.

'ADD STD-[ID]-[ID]&[ID]' Adds one or more standard actions by ID. The ‘&’ is used for "AND" and ‘-
‘ is used for "THROUGH".

'ADD FOLDER-[Folder
Name],[Parent]'

Adds a folder to the action list.
The parent specifies which parent folder the new folder is added to.
If parent is not supplied, this folder is added to the root of the action list.
64 RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
i!-ConnectLinx Commands (Cont.)

'ADD ACTION-[ID],
[Action],[Help String],
[Folder]'

Adds an action. The ID and Action are required.
The Help String appears in the action list file to help the user determine
this action’s function more clearly.
The Folder is the folder in which this action is added to, and must have
been previously created. If the folder is not supplied, the action is added to
the root of the action list.

'ADD NARG-[Action],
[Arg Name],[Min],[Max],
[Step],[Default]'

Adds a number argument to Action.
The Arg Name (Argument Name) is required.
The Min and Max define the limits for this argument in the range –32767 to
32767.
The Step defines the minimum step between increments/decrements.
The Default value defines the initial value this argument is set to when
the user edits this argument.

'ADD LARG-[Action],
[Arg Name],[Min],[Max],
[Step],[Default]'

Adds a level argument to Action.
The Arg Name (Argument Name) is required.
The Min and Max define the limits for this argument in the range –32767 to
32767.
The Step defines the minimum step between increments/decrements.
The Default value defines the initial value this argument is set to when
the user edits this argument.

'ADD SARG-[Action],
[Arg Name],[Min],[Max],
[Default]'

Adds a string argument to Action.
The Arg Name (Argument Name) is required. The Min and Max define
the min and max length of the string.
The Default value defines the initial value this argument is set to when
the user edits this argument.

'ADD EARG-[Action],
[Arg Name],[Default],
[Enum1],[Enum2]...'

Adds an enum argument to Action.
The Arg Name (Argument Name) is required.
The Default value defines the initial value this argument is set to when
the user edits this argument. Enum1, Enum2,… define the available
choices for the argument.

'GET NODE-[Name],
[Start],[End]'

Get the node description for Name including children from Start to End.
Returns a PARENT string and multiple CHILD strings.

'GET ACTION-[Name]' Get the action description for Name. Returns ACTION string and multiple
argument strings (NARG, LARG, SARG and EARG).

'GET UUID' Get the UUID for this i!-ConnectLinx. Returns a UUID string.

'GET ROOM INFO' Get the room info for this i!-ConnectLinx. Returns ROOM NAME, ROOM
LOCATION and, ROOM OWNER strings.

'GET ROOM NAME' Get the room info for this i!-ConnectLinx. Returns a ROOM NAME string.

'GET ROOM LOCATION' Get the room info for this i!-ConnectLinx. Returns a ROOM LOCATION
string.

'GET ROOM OWNER' Get the room info for this i!-ConnectLinx. Returns a ROOM OWNER
string.

'DEBUGON' Turns on debug.

'DEBUGOF' Turns off debug. (Default)

'RESET' Resets the action list.

'VERSION' Sends version information to Master debug port (Master messaging).
65RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
Strings

i!-ConnectLinx supports the following in-bound string (device to Master).

Module

The i!-ConnectLinxEngineMod Module definition code is displayed below.

DEFINE_MODULE 'i!-ConnectLinxEngineMod' mdlCL(vdvCLActions)

Where mdlCL is a unique module name.

i!-ConnectLinx Strings

String Description

"'ARG[Argument ID]-
[Argument String]'"

Argument String for string and enum arguments for an action exe-
cuted soon.

'PARENT-[Name],
[Child Count],[Parent]'

Describes a parent node. Returned by GET NODE command.

'CHILD[Child#]-[Name],
[ChildCount],[Parent]'

Describes a child of a node. Returned by GET NODE command.

'ACTION-[ID],[Action],
[Help String],[Folder]'

Describes an action. Returned by GET ACTION command.

'NARG-[Action],[Arg Name],
[Min],[Max],[Step,][Default]'

Describes a number argument to Action.

'LARG-[Action],[Arg Name],
[Min],[Max],[Step],[Default]'

Describes a level argument to Action.

'SARG-[Action],[Arg Name],
[Min],[Max],[Default]'

Describes a string argument to Action.

'EARG-[Action],[Arg Name],
[Default],[Enum1],[Enum2]...'

Describes an enum argument to Action.

'UUID-[UUID]' Provides the UUID for this i!-ConnectLinx. This ID can be used to
identify this instance of i!-ConnectLinx from all other instances of i!-
ConnectLinx.

'ROOM NAME-[Room Name]' Provide the room name as displayed in the action list file.

'ROOM LOCATION-
[Room Location]'

Provides the room location as displayed in the action list file.

'ROOM OWNER-[Owner Name]' Provides the room owner as displayed in the action list file.

'FILE WRITE' Notification that the i!-ConnectLinx file is being written.

'FILE SAVED' Notification that the i!-ConnectLinx file is has been saved.

i!-ConnectLinxEngineMod Module Parameter

vdvCLActions A virtual device number for programming NetLinx actions.
66 RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
i!-ConnectLinx Standard Function List

i!-ConnectLinx Standard Function List

Category ID Action ID Action

System Controls 1001 Power On 1021 Select Rack Computer

1002 Power Off 1022 Select Aux PC Input

1011 Select VHS 1023 Select Aux Vid Input

1012 Select Hi-8 1024 Select Slide (slide to video)

1013 Select Umatic 1025 Select Digital Media Player

1014 Select DVD 1041 Select Music (AM/FM Tuner or DSS)

1015 Select Laser Disc 1042 Select CD Player

1016 Select TV-DSS-Cable 1043 Select Cassette

1017 Select Video Conference 1044 Select DAT

1018 Select Document Camera 1045 Select Minidisc

1019 Select Room Camera 1046 Select Aux Audio Input

1020 Select Whiteboard 1047 Select Digital Audio Player

Lighting 1061 Lights All Off 1064 Lights Presentation Mode

1062 Lights All On 1065 Lights Conference Mode

1063 Lights Meeting Mode

Room Volume 1071 Program Mute 1075 Program 50%

1072 Program Unmute 1076 Program 75%

1073 Program 0% 1077 Program 100%

1074 Program 25% 1078 Program Set Volume

Speech Volume 1081 Speech Mute 1085 Speech 50%

1082 Speech Unmute 1086 Speech 75%

1083 Speech 0% 1087 Speech 100%

1084 Speech 25% 1088 Speech Set Volume

Screen 1091 Screen Up

1092 Screen Down

Drapes 1093 Drapes Open

1094 Drapes Close

Blinds 1095 Blinds Open

1096 Blinds Close

Lift 1097 Lift Up

1098 Lift Down

Video Projector/Display 1101 Display Power On 1104 Display Picture Unmute

1102 Display Power Off 1105 Display Picture Mute Toggle

1103 Display Picture Mute

VCR - VHS 1131 VCR Play 1135 VCR Rewind

1132 VCR Stop 1136 VCR Search Fwd

1133 VCR Pause 1137 VCR Search Rev

1134 VCR Fast Forward 1138 VCR Record

VCR - Hi-8 1161 Hi-8 Play 1165 Hi-8 Rewind

1162 Hi-8 Stop 1166 Hi-8 Search Fwd

1163 Hi-8 Pause 1167 Hi-8 Search Rev

1164 Hi-8 Fast Forward 1168 Hi-8 Record
67RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
i!-ConnectLinx Standard Function List

Category ID Action ID Action

VCR - Umatic 1191 Umatic Play 1195 Umatic Rewind

1192 Umatic Stop 1196 Umatic Search Fwd

1193 Umatic Pause 1197 Umatic Search Rev

1194 Umatic Fast Forward 1198 Umatic Record

DVD 1221 DVD Play 1226 DVD Search Fwd

1222 DVD Stop 1227 DVD Search Rev

1223 DVD Pause 1228 DVD Go To Track

1224 DVD Skip Forward 1229 DVD Go To Chapter

1225 DVD Skip Back 1230 DVD Go To Time

Laser Disc Player 1251 LDP Play 1256 LDP Search Fwd

1252 LDP Stop 1257 LDP Search Rev

1253 LDP Pause 1258 LDP Go To Track

1254 LDP Skip Forward 1259 LDP Go To Chapter

1255 LDP Skip Back 1260 LDP Go To Time

TV - DSS - Cable 1281 TV Channel Up 1305 TV-FOX

1282 TV Channel Down 1306 TV-UPN

1283 TV Go To Channel 1307 TV-WB

1291 TV Keypad 0 1308 TV-CNBC

1292 TV Keypad 1 1309 TV-CNN

1293 TV Keypad 2 1310 TV-CNNH

1294 TV Keypad 3 1311 TV-MSNBC

1295 TV Keypad 4 1312 TV-NEWSINT

1296 TV Keypad 5 1313 TV-BLOOM

1297 TV Keypad 6 1314 TV-CNNFN

1298 TV Keypad 7 1315 TV-FNC

1299 TV Keypad 8 1316 TV-CSPAN

1300 TV Keypad 9 1317 TV-ESPN

1301 TV-ABC 1318 TV-TBS

1302 TV-CBS 1319 TV-TECHTV

1303 TV-NBC 1320 TV-TWC

1304 TV-PBS

Video Conference 1341 Vconf Hang-up Video 1354 Vconf Keypad 3

1342 Vconf Dial Video 1355 Vconf Keypad 4

1343 Vconf Hang-up Audio 1356 Vconf Keypad 5

1344 Vconf Dial Audio 1357 Vconf Keypad 6

1345 Vconf Speed Dial 1358 Vconf Keypad 7

1346 Vconf Privacy On 1359 Vconf Keypad 8

1347 Vconf Privacy Off 1360 Vconf Keypad 9

1351 Vconf Keypad 0 1361 Vconf Keypad *

1352 Vconf Keypad 1 1362 Vconf Keypad #

1353 Vconf Keypad 2

Document Camera 1371 Doccam Upper Lights

1372 Doccam Lower Lights

1373 Doccam Preset
68 RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
i!-ConnectLinx Standard Function List

Category ID Action ID Action

Room Camera 1401 Camera Preset

Rack Computer 1461 Computer Play 1466 Computer Last Slide

1462 Computer Stop 1467 Computer First Slide

1463 Computer Pause 1468 Computer Goto Slide

1464 Computer Next 1469 Computer Goto Presentation

1465 Computer Prev

Aux PC Input 1491 Laptop Play 1496 Laptop Last Slide

1492 Laptop Stop 1497 Laptop First Slide

1493 Laptop Pause 1498 Laptop Goto Slide

1494 Laptop Next 1499 Laptop Goto Presentation

1495 Laptop Prev

Slide 1521 Slide Power On 1524 Slide Previous

1522 Slide Power Off 1525 Slide Go To Slide

1523 Slide Next

Digital Media Player 1551 Digital Media Play 1555 Digital Media Skip Back

1552 Digital Media Stop 1556 Digital Media Search Fwd

1553 Digital Media Pause 1557 Digital Media Search Rev

1554 Digital Media Skip
Forward

Select Music 1701 Music - 60's 1704 Music - Country

1702 Music - 70's 1705 Music - Hits

1703 Music - 80's

Select Music 1706 Music - Rock 1712 Music - Classical

1707 Music - Urban 1713 Music - News

1708 Music - Jazz+Blues 1714 Music - Sports

1709 Music - Dance 1715 Music - Comedy

1710 Music - Latin 1716 Music - Talk

1711 Music - World

CD Player 1731 CD Play 1736 CD Search Fwd

1732 CD Stop 1737 CD Search Rev

1733 CD Pause 1738 CD Go To Track

1734 CD Skip Forward 1739 CD Go To Disc

1735 CD Skip Back

Cassette 1761 Cass A Play 1771 Cass B Play

1762 Cass A Stop 1772 Cass B Stop

1763 Cass A Pause 1773 Cass B Pause

1764 Cass A FastForward 1774 Cass B FastForward

1765 Cass A Rewind 1775 Cass B Rewind

1766 Cass A Record 1776 Cass B Record

Digital Audio Tape (DAT) 1791 DAT Play 1795 DAT Rewind

1792 DAT Stop 1796 DAT Search Fwd

1793 DAT Pause 1797 DAT Search Rev

1794 DAT Fast Forward 1798 DAT Record
69RMS - NetLinx Programmer’s Guide

i!-ConnectLinx
i!-ConnectLinx Standard Function List

Category ID Action ID Action

Mini Disc 1821 MD Play 1826 MD Search Fwd

1822 MD Stop 1827 MD Search Rev

1823 MD Pause 1828 MD Record

1824 MD Fast Forward 1829 MD Go To Track

1825 MD Rewind

Audio Conference 1851 Aconf Hangup 1865 Aconf Keypad 4

1852 Aconf Dial 1866 Aconf Keypad 5

1853 Aconf Speed Dial 1867 Aconf Keypad 6

1854 Aconf Privacy on 1868 Aconf Keypad 7

1855 Aconf Privacy off 1869 Aconf Keypad 8

1861 Aconf Keypad 0 1870 Aconf Keypad 9

1862 Aconf Keypad 1 1871 Aconf Keypad *

1863 Aconf Keypad 2 1872 Aconf Keypad #

1864 Aconf Keypad 3

Digital Audio Player 1881 Digital Audio Play 1885 Digital Audio Skip Back

1882 Digital Audio Stop 1886 Digital Audio Search Fwd

1883 Digital Audio Pause 1887 Digital Audio Search Rev

1884 Digital Audio Skip
Forward
70 RMS - NetLinx Programmer’s Guide

Multiple RMS Instances
Multiple RMS Instances

Overview
RMS supports multiple instances loaded on 1 NetLinx master. There can either be 4 instances controlling and
monitoring as many devices that may be physically connected to one master, or 12 instances scheduling and
displaying with no devices other than touch panels. There is an example of multiple instance programming
included in the RMS SDK, RMS (Multi-Instance).apw.

Each master instance must declare it's own communications socket, RMS Engine device, touch panels and
specific devices for the instance.

Only one set of i!-ConnectLinx functions is necessary in multiple RMS instances. It is possible to control
unique functions within the multi-instanced rooms but source usage and system power only works for one
room.

Below is an example of two instances from RMSMain-4Systems, which is included in the SDK:

(* RMS INSTANCE #1 *)

dvTPMain_1 = 10001:1:0 (* RMS Main Touch Panel *)

dvTPWelcome_1 = 10002:1:0 (* RMS Welcome Touch Panel *)

dvRMSSocket_1 = 0:3:0 (* RMS IP Socket *)

vdvRMSEngine_1 = 33001:1:0 (* RMS Virtual Device *)

vdvProjModule_1 = 33002:1:0 (* Projector Virtual Device *)

dvProj_1 = 5001:1:0 (* Projector Real Device *)

vdvSWTModule_1 = 33003:1:0 (* Switcher Virtual Device *)

dvSWT_1 = 5001:2:0 (* Switcher Real Device *)

vdvVCRModule_1 = 33004:1:0 (* VCR Virtual Device *)

dvVCR_1 = 5001:9:0 (* VCR Real Device *)

dvRELAY_1 = 5001:8:0 (* NI-3000 Relay *)

(* RMS INSTANCE #2 *)

dvTPMain_2 = 10003:1:0 (* RMS Main Touch Panel *)

dvTPWelcome_2 = 10004:1:0 (* RMS Welcome Touch Panel *)

dvRMSSocket_2 = 0:4:0 (* RMS IP Socket *)

vdvRMSEngine_2 = 33011:1:0 (* RMS Virtual Device *)

vdvProjModule_2 = 33012:1:0 (* Projector Virtual Device *)

dvProj_2 = 5002:1:0 (* Projector Real Device *)

vdvSWTModule_2 = 33013:1:0 (* Switcher Virtual Device *)

dvSWT_2 = 5002:2:0 (* Switcher Real Device *)

vdvVCRModule_2 = 33014:1:0 (* VCR Virtual Device *)

dvVCR_2 = 5002:9:0 (* VCR Real Device *)

dvRELAY_2 = 5002:8:0 (* NI-3000 Relay *)
71RMS - NetLinx Programmer’s Guide

Multiple RMS Instances
The rest of the multi instance information is in the include file RMSMain-Multi.axi in the SDK.

Declare a Dev Array of RMS Engine Instances
In the include, declare a dev array of RMS Engine instances using the previously declared engines, e.g.,
vdvRMSEngine_1, a dev array for each master instances of touch panels (one each for main and welcome
panels), and dev arrays for keyboards for each panel (the main ones only). See below:

// create an array of all RMS engines

VOLATILE DEV vdvRMSEngines[] = {vdvRMSEngine_1, vdvRMSEngine_2}

// create a touch panel device array for all main touch panels for each RMS

instance

VOLATILE DEV dvRMSTP_1[] = {dvTPMain_1}

VOLATILE DEV dvRMSTP_2[] = {dvTPMain_2}

// create a touch panel device array for all welcome touch panels for each RMS

instance

VOLATILE DEV dvRMSTPWelcome_1[] = {dvTPWelcome_1}

VOLATILE DEV dvRMSTPWelcome_2[] = {dvTPWelcome_2}

Module Defining
Each instance must define it's own modules, which directly affects how many instances can be run (memory
constraint). The example uses two instances.

// 1st RMS instance...

// RMSSrcUsageMod - Tracks equipment usage

DEFINE_MODULE 'RMSSrcUsageMod' mdlSrcUsage_1(vdvRMSEngine_1, vdvCLActions)

// Switcher

DEFINE_MODULE 'RMSBasicDeviceMod' mdlBasicDev_1(vdvSWTModule_1, dvSWT_1,

vdvRMSEngine_1)

// VCR

DEFINE_MODULE 'RMSTransportMod' mdlXport_1(vdvVCRModule_1, dvVCR_1,

vdvRMSEngine_1)

// Display

DEFINE_MODULE 'RMSProjectorMod' mdlProj_1(vdvProjModule_1, dvProj_1,

vdvRMSEngine_1)

// RMSEngineMod - The RMS engine. Requires i!-ConnectLinxEngineMod.

DEFINE_MODULE 'RMSEngineMod' mdlRMSEng_1(vdvRMSEngine_1, dvRMSSocket_1,

vdvCLActions)

// RMSUIMod - The RMS User Interface. Requires KeyboardMod.

// Channel And Variable Text Code Defined Inside The Module

DEFINE_MODULE 'RMSUIMod' mdlRMSUI_1(vdvRMSEngine_1, dvRMSTP_1,

dvRMSTPWelcome_1, RMS_MEETING_DEFAULT_SUBJECT, RMS_MEETING_DEFAULT_MESSAGE)

72 RMS - NetLinx Programmer’s Guide

Multiple RMS Instances
// 2nd RMS instance...

// RMSSrcUsageMod - Tracks equipment usage

DEFINE_MODULE 'RMSSrcUsageMod' mdlSrcUsage_2(vdvRMSEngine_2, vdvCLActions)

// Switcher

DEFINE_MODULE 'RMSBasicDeviceMod' mdlBasicDev_2(vdvSWTModule_2, dvSWT_2,

vdvRMSEngine_2)

// VCR

DEFINE_MODULE 'RMSTransportMod' mdlXport_2(vdvVCRModule_2, dvVCR_2,

vdvRMSEngine_2)

// Display

DEFINE_MODULE 'RMSProjectorMod' mdlProj_2(vdvProjModule_2, dvProj_2,

vdvRMSEngine_2)

// RMSEngineMod - The RMS engine. Requires i!-ConnectLinxEngineMod.

DEFINE_MODULE 'RMSEngineMod' mdlRMSEng_2(vdvRMSEngine_2, dvRMSSocket_2,

vdvCLActions)

// RMSUIMod - The RMS User Interface. Requires KeyboardMod.

// Channel And Variable Text Code Defined Inside The Module

DEFINE_MODULE 'RMSUIMod' mdlRMSUI_2(vdvRMSEngine_2, dvRMSTP_2, dvRMSTPWelcome_2,

RMS_MEETING_DEFAULT_SUBJECT, RMS_MEETING_DEFAULT_MESSAGE)

The function RMSDevMonRegisterCallback() has a call to DevMonRegisterHelper(…) for each master
instance and their respective devices. These two functions have to be modified to register instances and devices
as desired by the user. The example registers the same devices for each instance.

Define modules for whatever is running on each master’s instance.
73RMS - NetLinx Programmer’s Guide

Multiple RMS Instances
Stacking and Handling Events
Because the rest of the code (common include, and others) is single instance driven, there is a switch going on
for every event. Determine who is raising the event and then switch the global RMSEngine to the engine the
event is coming from. The example uses a shared function SetEngine(engine instance) to do the dirty work.
Each event checks to see who raised it and sets the correct instance for the rest of the work.

Example:

(***)

(* DATA: Main Touch Panel *)

(* DATA: TP Battery Level *)

(***)

DATA_EVENT[dvTPMain_1]

DATA_EVENT[dvTPMain_2]

DATA_EVENT[dvTPMain_3]

DATA_EVENT[dvTPMain_4]

{

 ONLINE:

 {

 STACK_VAR INTEGER nInstance

 // set the current RMS engine instance based on the TP device

 IF(DATA.DEVICE = dvTPMain_1)

 SetEngine(vdvRMSEngine_1)

 ELSE IF(DATA.DEVICE = dvTPMain_2)

 SetEngine(vdvRMSEngine_2)

 ELSE IF(DATA.DEVICE = dvTPMain_3)

 SetEngine(vdvRMSEngine_3)

 ELSE IF(DATA.DEVICE = dvTPMain_4)

 SetEngine(vdvRMSEngine_4)

 // get the current RMS engine instance index

 nInstance = GetRMSEngineInstance()

 }

}

74 RMS - NetLinx Programmer’s Guide

Multiple RMS Instances
Multi-Instancing RFID Device Tracking in RMS
This section describes the steps necessary to support RFID tracking in a NetLinx program with multiple
instance of RMS.

1. DEFINE_DEVICE

A single virtual device is needed for the Anterus Duet module and a device definition is needed for each RFID
reader device.

vdvAnterusGateway = 41001:1:0 (* Duet RFID Virtual Device (global instance) *)

 // RMS INSTANCE #1

 dvAnterusReader1 = 84:1:0 (* AxLink Anterus RFID Reader #1 *)

 dvAnterusReader2 = 85:1:0 (* AxLink Anterus RFID Reader #2 *)

 dvAnterusReader3 = 86:1:0 (* AxLink Anterus RFID Reader #3 *)

 dvAnterusReader4 = 87:1:0 (* AxLink Anterus RFID Reader #4 *)

 // RMS INSTANCE #2

 dvAnterusReader5 = 88:1:0 (* AxLink Anterus RFID Reader #5 *)

 dvAnterusReader6 = 89:1:0 (* AxLink Anterus RFID Reader #6 *)

 dvAnterusReader7 = 90:1:0 (* AxLink Anterus RFID Reader #7 *)

 dvAnterusReader8 = 91:1:0 (* AxLink Anterus RFID Reader #8 *)

 // RMS INSTANCE #3

 dvAnterusReader9 = 92:1:0 (* AxLink Anterus RFID Reader #9 *)

 dvAnterusReader10 = 93:1:0 (* AxLink Anterus RFID Reader #10 *)

 dvAnterusReader11 = 94:1:0 (* AxLink Anterus RFID Reader #11 *)

 dvAnterusReader12 = 95:1:0 (* AxLink Anterus RFID Reader #12 *)

 // RMS INSTANCE #4

 dvAnterusReader13 = 96:1:0 (* AxLink Anterus RFID Reader #13 *)

 dvAnterusReader14 = 97:1:0 (* AxLink Anterus RFID Reader #14 *)

 dvAnterusReader15 = 98:1:0 (* AxLink Anterus RFID Reader #15 *)

 dvAnterusReader16 = 99:1:0 (* AxLink Anterus RFID Reader #16 *)

2. DEFINE_CONSTANT

Define a string array (two-dimensional array) constant for the list of RFID reader address labels for each
instance of RMS.

The third parameter of the 'RMSRFIDTrackingMod-Multi' module is used to identify which Anterus RFID
readers an instance of the 'RMSRFIDTrackingMod-Multi' module should monitor and relay RFID tag status to
the RMS server. Each RFID reader configured in Anterus supports a user defined reader address label. (This
address label is separate from the reader's physical AxLink DPS address).

By default, the Anterus module will automatically label each RFID reader's address label field using its
AxLink DPS address. Once a RFID reader address label is recorded in Anterus, that label is persisted unless
the RFID reader is deleted or manually renamed via the 'RFID Configuration Manager' web page hosted on the
NetLinx master.

Although Anterus does provide a default RFID reader address label, it is a user customizable field and can be
overridden and manually defined via the 'RFID Configuration Manager' web page hosted on the NetLinx
master.

Only a single instance of the Anterus Duet module is needed.
75RMS - NetLinx Programmer’s Guide

Multiple RMS Instances
It is important to note that if using the multi-instanced 'RMSRFIDTrackingMod-Multi' module, these RFID
reader address labels are required to be known by the module and the module will not work properly if the
RFID Reader address labels are changed by the user and are no longer in sync with the labels defined in code.

 // IMPORTANT !!

 //

 // By default when Anterus creates a RFID reader address

 // label, it uses the fully-qualifed

 // D:P:S with the actual system number.

 // The real system number, not '0', should be used

 // in the RFID reader address labels listed below.

 //

 // RMS INSTANCE #1

 CHAR RFID_READER_ADDRESS_LABELS_1[][15] = { '84:1:1',

 '85:1:1',

 '86:1:1',

 '87:1:1' }

 // RMS INSTANCE #2

 CHAR RFID_READER_ADDRESS_LABELS_2[][15] = { '88:1:1',

 '89:1:1',

 '90:1:1',

 '91:1:1' }

 // RMS INSTANCE #3

 CHAR RFID_READER_ADDRESS_LABELS_3[][15] = { '92:1:1',

 '93:1:1',

 '94:1:1',

 '95:1:1' }

 // RMS INSTANCE #4

 CHAR RFID_READER_ADDRESS_LABELS_4[][15] = { '96:1:1',

 '97:1:1',

 '98:1:1',

 '99:1:1' }
76 RMS - NetLinx Programmer’s Guide

Multiple RMS Instances
3. DEFINE_MODULE

Define modules. A single module definition is needed for the Anterus Duet module.

 // Anterus RFID Duet Module

 DEFINE_MODULE 'AMX_Anterus_Comm_dr1_0_0'

mdlAnterusDuetMod(vdvAnterusGateway,dvAnterusReaders[1])

Multiple module definitions are needed for the RFIDTrackingMod-Multi module. A module definition is
needed for each RMS instance supporting RFID device tracking.

z The module parameters include: the global Anterus Duet module virtual device,

z the unique RMS Engine virtual device instance and

z the specific RFID reader address label array containing the RFID readers associated with this
instance of RMS.

// RMS INSTANCE #1

 DEFINE_MODULE 'RMSRFIDTrackingMod-Multi' mdlRMSRFIDTracking_1

 (vdvAnterusGateway,vdvRMSEngine_1,

 RFID_READER_ADDRESS_LABELS_1)

// RMS INSTANCE #2

 DEFINE_MODULE 'RMSRFIDTrackingMod-Multi' mdlRMSRFIDTracking_2(vdvAnterusGateway,

 vdvRMSEngine_2,

 RFID_READER_ADDRESS_LABELS_2)

// RMS INSTANCE #3

 DEFINE_MODULE 'RMSRFIDTrackingMod-Multi' mdlRMSRFIDTracking_3

 (vdvAnterusGateway,vdvRMSEngine_3,

 RFID_READER_ADDRESS_LABELS_3)

// RMS INSTANCE #4

 DEFINE_MODULE 'RMSRFIDTrackingMod-Multi' mdlRMSRFIDTracking_4

 (vdvAnterusGateway,vdvRMSEngine_4,

 RFID_READER_ADDRESS_LABELS_4)

4. DATA_EVENT

A data event is needed when the Anterus Duet module virtual device comes online to identify all of the RFID
reader devices to the Duet module.

See the Anterus documentation for more information on the 'PROPERTYIdentifiers' command.

 DATA_EVENT[vdvAnterusGateway]

 {

 ONLINE:

 {

 // send the IDENTIFIERS property to the Anterus

 // Duet module to identify additional reader devices

 SEND_COMMAND vdvAnterusGateway,"'PROPERTY-

Identifiers,84;85;86;87;88;89;90;91;92;93;94;95;96;97;98;99'"

 // send the REINT command to the Anterus Duet

 // module to re-initialize with the updated reader addresses

 SEND_COMMAND vdvAnterusGateway,"'REINIT'"

 }

 }

The multi-instance sample code included in the RMS SDK includes all the necessary code to implement the
Anterus Duet module and RFID tracking with multiple instances of RMS.

In the RMSMain-4Systems.AXS file, search and find the #DEFINE RMS_RFID_ENABLED statement.

If this statement is un-commented, then the multi-instance sample code will compile including all the
necessary RFID implementation code.

The implementation code can be found in the RMSMain-4Systems.AXS and RMSMain-Multi.AXI files.
77RMS - NetLinx Programmer’s Guide

4/
10

 ©
20

10
 A

M
X

. A
ll

rig
ht

s
re

se
rv

ed
. A

M
X

 a
nd

 t
he

 A
M

X
 lo

g
o

 a
re

 r
eg

is
te

re
d

 t
ra

d
em

ar
ks

 o
f A

M
X

. A
M

X
 r

es
er

ve
s

th
e

ri
g

ht
 t

o
 a

lte
r

sp
ec

ifi
ca

tio
ns

 w
ith

o
ut

 n
o

tic
e

at
 a

ny
 t

im
e.

It’s Your World - Take Control™

3000 RESEARCH DRIVE, RICHARDSON, TX 75082 USA • 800.222.0193 • 469.624.8000 • 469-624-7153 fax • 800.932.6993 technical support • www.amx.com
93-3002-04 REV R

	RMS - NetLinx Programmer’s Guide
	Overview
	System Requirements
	Concepts
	Network Configuration
	Device Monitoring Framework
	Device Values
	Parameter Values
	Status Types
	Notification Process
	Alert Messages
	Advise Messages
	RFID Device Tracking

	Getting Started
	Overview
	Using RMS CodeCrafter
	RMS NetLinx Code Architecture
	Interfacing With the RMS SDK
	Service Mode
	Device Parameter Persistence

	Custom Device Monitoring Programming
	Overview
	RMSCommon.axi
	RMSDevMonRegisterCallback()
	RMSDevMonSetParamCallback()

	RMS Engine Module
	RMS Device Monitoring Support Modules
	RMSBasicDeviceMod
	RMSProjectorMod
	RMSTransportMod
	RMSSldProjMod
	Programming
	Control Failure
	Device Information

	Monitoring Source Usage
	Source Select

	Monitoring Many NetLinx-Connected Devices
	RMSNLDeviceMod

	Monitoring A Single NetLinx-Connected Device
	Registering Devices
	Registering Parameters
	Parameters

	Setting Parameter Values

	Custom "Scheduling Only" Programming
	Overview

	NetLinx Modules
	RMSEngineMod Module
	Commands
	Strings
	Channels
	Levels
	Module Definition
	Touch Panel Pages

	RMSRFIDTrackingMod Module
	Commands
	Module Definition
	Touch Panel Pages

	RMSRFIDTrackingMod-Multi Module
	Commands
	Module Definition
	Touch Panel Pages

	RMSUIMod Module
	Commands
	Module Definition
	Touch Panel Pages
	Constants

	RMSWelcomeOnlyUIMod Module
	Commands
	Module Definition
	Touch Panel Pages
	Constants

	RMSHelpUIMod Module
	Commands
	Module Definition
	Touch Panel Pages

	RMSNLDeviceMod Module
	Commands
	Module Definition
	Touch Panel Pages

	RMSProjectorMod Module
	Commands
	Strings
	Channels
	Module Definition
	Touch Panel Pages

	Reporting for Multiple Bulb Projectors (Limited Support)
	RMSMain.axi File Changes
	RMSProjectorMod Module Changes

	RMSTransportMod Module
	Commands
	Strings
	Channels
	Module Definition
	Touch Panel Pages

	RMSBasicDeviceMod Module
	Commands
	Strings
	Channels
	Module Definition
	Touch Panel Pages

	RMSSldProjMod Module
	Commands
	Channels
	Module Definition
	Touch Panel Pages

	RMSSrcUsageMod Module
	Commands
	Channels
	Module Definition
	Touch Panel Pages

	Anterus Duet Module
	Module Definition

	i!-ConnectLinx
	Overview
	Using i!-ConnectLinx
	Standard Actions
	Action Arguments
	Action Persistence and Distribution
	International Issues / Localization
	Programming
	Channels
	Levels
	Commands
	Strings
	Module

	i!-ConnectLinx Standard Function List

	Multiple RMS Instances
	Overview
	Declare a Dev Array of RMS Engine Instances
	Module Defining
	Stacking and Handling Events
	Multi-Instancing RFID Device Tracking in RMS

