

© HARMAN

HiQnet Third Party
Programmer

Documentation
Protocol Specification

System Development and Integration Group

19th February 2013

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 1 of 91

Abstract

This document describes the formatting and methods available for third-party

programmers to control HiQnet Devices.

For BSS Soundweb London devices you should refer to the BSS Soundweb

London Third Party Control Document available from the BSS Audio website.

Limited warranty

No warranties: Harman expressly disclaims any warranty for the 'HiQnet Third

Party Programmer Documentation'. The 'HiQnet Third Party Programmer

Documentationô and any related documentation is provided 'as is' without

warranty of any kind, either express or implied, including, without limitation, the

implied warranties or merchantability, fitness for a particular purpose, or non-

infringement. The entire risk arising out of use or performance of the 'HiQnet

Third Party Programmer Documentation' remains with you.

No Liability for damages: In no event shall Harman or its suppliers be liable for

any damages whatsoever (including, without limitation, damages for loss of

business profits, business interruption, loss of business information, or any other

pecuniary loss) arising out of the use of, misuse of, or inability to use this Harman

product, even if Harman has been advised of the possibility of such damages.

Because some states/jurisdictions do not allow the exclusion or limitation of

liability for consequential or incidental damages, the above limitation may not

apply to you.

Harman

8760 South Sandy Parkway

Sandy, Utah 84070

Phone +1 (801) 568-7660

Fax +1 (801) 568-7662

International fax +1 (801) 568-7583

Revision 2.2 February 2013

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 2 of 91

Table of Contents

1 OVERVIEW ... 6

1.1 References ... 6

1.2 Scope.. 6

2 HIQNET PRODUCT ARCHITECTURE .. 7

2.1 Device ... 8

2.2 Virtual Device ... 8

2.3 Virtual Device Attributes ... 8

2.4 Device Manager Virtual Device .. 8

2.5 Object ... 9

2.6 Parameter ... 9

2.6.1 Parameter Attributes .. 9

2.7 HiQnet Addressing ... 11

2.7.1 HiQnet Device Address ... 12

2.7.2 Virtual Device Address .. 13

2.7.3 Object Address .. 14

2.7.4 Source & Destination Addresses in Messages...................................... 14

2.7.5 Parameter Index .. 15

2.7.6 Parameter Range .. 15

2.8 Alternate methods of finding a HiQnet address. .. 16

2.8.1 Copy HiQnet Information ... 16

2.8.2 Finding an Address using the Custom Panels and the Properties
Window ... 17

3 HIQNET MESSAGE FORMAT .. 22

3.1 Header .. 22

3.1.1 Version ... 23

3.1.2 Header Length ... 23

3.1.3 Message Length .. 23

3.1.4 Source Address ... 23

3.1.5 Destination Address ... 23

3.1.6 Message ID .. 24

3.1.7 Flags .. 24

3.1.8 Hop Count .. 24

3.1.9 Sequence Number ... 24

3.2 Types of Messages .. 24

3.2.1 Request Acknowledgement Message ... 24

3.2.2 Acknowledge Message Flag .. 25

3.2.3 Information Message Flag ... 25

3.2.4 Error Message Flag ... 25

3.2.5 Guaranteed Message Flag .. 25

3.2.6 Multi-part Message Flag .. 26

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 3 of 91

3.3 Device Level Methods .. 27

3.3.1 Get Attributes ... 27

3.3.2 GetVDList... 28

3.3.3 Store .. 29

3.3.4 Recall ... 31

3.3.5 Recall Action Determines Type of Data Affected 31

3.3.6 Locate .. 32

3.3.7 Locate Message .. 32

3.4 Event Log ... 33

3.4.1 Event Log Data .. 33

3.4.2 Requesting Event Log Client Subscriptions .. 35

3.4.3 Request Event Log .. 38

3.4.4 Request Event Log INFORMATION (response):................................... 39

3.5 Introduction to Parameters ... 41

3.5.1 Data Type Definition .. 41

3.5.2 Sensor/Non-Sensor ... 42

3.6 MultiParamSet .. 42

3.7 MultiParamGet .. 42

3.7.1 INFORMATION: ... 43

3.8 MultiParamSubscribe ... 44

3.9 MultiParamUnsubscribe ... 45

3.10 MultiObjectParamSet.. 46

3.11 ParamSetPercent ... 46

3.11.1 ParamSetPercent Message ... 48

3.12 ParamSubscribePercent .. 49

3.12.1 ParamSubscribePercent Message .. 50

4 HIQNET NETWORK MODEL .. 51

4.1 Routing Layer ... 51

4.1.1 Routing Layer Introduction ... 51

4.1.2 Transmitting Messages .. 52

4.1.3 Datagram Service .. 52

4.1.4 DiscoInfo .. 53

4.1.5 NetworkInfo .. 54

4.1.6 Device Arrival ñAnnounceò ... 54

4.1.7 Device Departure ñGoodbyeò ... 55

4.2 Device Discovery on Demand .. 55

4.2.1 Searching for a Device .. 56

4.2.2 Keep Alive/Device Departure... 56

4.3 Table of Routing Layer Message IDs ... 58

4.3.1 DiscoInfo .. 58

4.3.2 GetNetworkInfo .. 59

4.3.3 Request Address ... 60

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 4 of 91

4.3.4 AddressUsed ... 60

4.3.5 SetAddress .. 61

4.3.6 Goodbye .. 61

4.3.7 Hello Query .. 62

4.3.8 Hello Info .. 63

4.4 Packet Service Layers .. 63

4.5 TCP/IP Packet Service ... 63

4.5.1 Reliable (TCP) Packet Service .. 64

4.5.2 Datagram (UDP) Packet Service ... 64

4.5.3 NetworkInfo .. 64

4.5.4 Gateway ... 65

4.5.5 Use Case ï Closed loop control of a HiQnet product via TCP/IP ï
addressing already fixed. .. 65

4.5.6 Use Case ï Open Loop control of a HiQnet product via UDP 66

5 HIQNET STRING SETTINGS .. 67

6 RS232 PACKET SERVICE .. 69

6.1 Getting Started/Basic Command Structure .. 69

6.1.1 Baud Rate .. 70

6.1.2 Big Endian.. 70

6.1.3 Data Types... 70

6.1.4 Resync Request / Resync Acknowledge ... 70

6.1.5 Ping .. 70

6.1.6 Resync_Acknowledge Byte ... 71

6.1.7 Frame Start Bytes .. 71

6.1.8 Basic Command Structure (Unacknowledged ï Open Loop) 71

6.1.9 Number Parameters .. 72

6.1.10 Parameter_ID ... 72

6.1.11 Data_Type.. 72

6.1.12 Parameter_Val ... 72

6.1.13 CCIT checksum ... 72

6.2 Setting Up and Maintaining a Communication Connection 73

6.2.1 Guaranteed Acknowledgement ... 77

6.2.2 Resync ... 77

6.3 Recall 0x0125 (Message ID) .. 77

6.4 Calculating Checksums .. 78

6.4.1 How to calculate a checksum using code for the Harman HiQnet
Device: .. 78

6.4.2 Serial String Method .. 80

6.5 Feedback .. 80

6.5.1 ParameterSubscribeAll .. 81

6.5.2 ParameterUnSubscribeAll ... 82

7 SESSIONS .. 85

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 5 of 91

7.1 Starting a Session .. 85

7.2 Detecting a Session Break ... 85

7.3 Characteristics of a Session ... 86

7.4 Sessions Use Cases .. 87

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 6 of 91

1 Overview

1.1 References

1.2 Scope

This document provides the publicly available means for controlling HiQnet

products. Included are the following:

¶ HiQnet product architecture

¶ All formatting of messages

¶ Network specific information for implemented transports

¶ Open-loop and closed loop control methodologies

¶ Examples utilizing System Architect to facilitate message formation

Although examples are given using specific Devices, detailed documentation is

not provided for every HiQnet Device. Instead, methods of using System

Architect to glean that information are provided. It is assumed that readers are

familiar with System Architect, the basics of Ethernet networking, and RS232.

Note that it is not intended that third-party control Devices implement all of the

methods detailed in this document. It is assumed that in most cases only a subset

of these messages will be implemented. Some of the information presented is for

explanatory reasons only, such that a person desiring to control a HiQnet Device

may understand the underlying behavior. Lastly, control of USB products is

beyond the scope of this document.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 7 of 91

2 HiQnet Product Architecture
It is important to have a basic knowledge of how HiQnet products are developed.

We envisage HiQnet as more than just a networking protocol. Our goal is to

develop a system solution for all Harman Pro networked products. To facilitate

that end, we have designed a common model or architecture for all products that

will be developed under HiQnet. This common product architecture is then

reflected as a messaging system that enables communication between products.

Finally, HiQnet also consists of reference designs on common physical networks.

The HiQnet messaging protocol was designed to be transport independent, it

requires only certain network services.

Node

Virtual Device (Node Manager)

Param

Param

Param

Object

Object

Param

Param

Param

Object

Param

Param

Param

Virtual Device

Param

Param

Param

Param

Param

The HiQnet product is modeled with a multi-tiered approach. The top level that

usually represents the product itself is called a Device. The Device must contain

at least one Virtual Device, the first of which acts as a Device Manager. Each

Virtual Device can contain Objects and/or Parameters. Objects themselves can

contain other Objects or Parameters. A Parameter contains the state of a single

controllable variable. Below we will define each of these terms in detail.

At every level in the hierarchy there are also attributes. Attributes are member

variables that contain useful data about the containing Virtual Device, Object, or

Parameter. For instance, one Object attribute is the Object Name. In the case of

parameters, attributes are used to hold the parameter's max and min values.

Attributes can either be STATIC, Instance, or Instance+Dynamic. STATIC

attributes are the same value across all Devices that are the same

manufacturer/model. Attributes that are denoted Instance indicates that the Device

upon powerup sets the value of the attribute. Attributes that are denoted

Instance+Dynamic are those that are set on Instantiation and can change during

the life of the item.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 8 of 91

Virtual Devices, Objects, and Parameters all have a unique Class ID and Class

Name. Either the Class Name or ID can be used to uniquely identify the HiQnet

item and allow the designer to know key information about the item. For example,

from the Class ID of an Object, the designer knows the number, type, and order of

Parameters in the object. From the Parameter Class ID, the designer knows the

data type and max/min.

It is important to note that there is no distinction in HiQnet between elements used

for signal processing such as a Parametric EQ, control elements such as a

mechanical fader, or sensor elements such as an output meter. Even global items

such as passwords and MIDI channels can and should be put inside the basic

HiQnet model. By viewing everything as a parameter, Object, or Virtual Device,

the same mechanisms for subscriptions and control can be universally applied

across the product.

2.1 Device

Device designates the Device or product itself. Devices are comprised of Virtual

Devices.

2.2 Virtual Device

The Virtual Device is a collection of Objects, parameters and attributes that make

up a useful unit. They offer the designers a convenient method of segmenting the

product. As an example, if you examine the structure of the dbx 4800 in the

System Explorer you will see that they have separated the product into two

sections, one for all the processing objects that can change with presets changes

and the other for the global utility section. At a glance it is very easy to

distinguish which parameters will be affected by a preset change.

2.3 Virtual Device Attributes

All Virtual Devices have the following Attributes:

AttributeID Attribute Data Type

0 Class Name STRING Static

1 Name String STRING Instance + Dynamic

2.4 Device Manager Virtual Device

Every product contains at least one Virtual Device, the Device Manager. Some

products such as the Crown UPS3 have been architected with only the Minimum

Device Manager Virtual Device.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 9 of 91

2.4.1.1 Device Manager Attributes

All Device managers Virtual Devices have the following Attributes:

Attribute ID Attribute Data Type

 0 Class Name STRING Static

1 Name String STRING Instance + Dynamic

2 Flags UWORD Instance

3 Serial Number BLOCK Instance

4 Software Version STRING Instance

2.5 Object

A HiQnet Object is a collection of parameters grouped together for convenience.

An example would be an EQ object or compressor object. Objects can contain

other objects so for example a channel object could be comprised of a gain and an

EQ object.

2.6 Parameter

Within the HiQnet model, the smallest modifiable parameter in a product is held

within the parameter. Examples of parameters include the variables of an audio

object, like frequency and the position of a fader on a control surface. Simple

products like a wall controller may contain only several parameters, while others

such as a mixing console may contain hundreds of thousands. Typical operations

on parameters include ósetô a variable and ógetô a variable; these could translate to

setting the frequency of an EQ and getting a delay time for display.

The HiQnet protocol supports several different data types including Unsigned

Byte, Float, String, etc. It is important when you are sending a message to a

HiQnet Device that you use the appropriate data format.

2.6.1 Parameter Attributes

Attribute ID Attribute Name Data Type Category

0 Data Type See Definition Static

1 Name String STRING Instance+Dynamic

2 Minimum Value Data Type Instance

3 Maximum Value Data Type Instance

4 Control Law Static

5 Flags UWORD Static

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 10 of 91

2.6.1.1 Minimum Value

Minimum Value is specified in the Parameterôs Data Type. See section 2.7.6 for

an explanation on how to retrieve the minimum value of a parameter.

2.6.1.2 Maximum Value

Maximum Value is specified in the Parameterôs Data Type except for the BLOCK

and STRING types, which will use a UWORD for its maximum. In the case of a

block, the maximum value specifies the maximum size that the variable length

block can be in bytes. In the case of a string, the maximum value also specifies

storage, which is twice the number of characters including the NULL because

strings are encoded with Unicode. See section 2.7.6 for an explanation on how to

retrieve the maximum value of a parameter.

2.6.1.3 Control Law

The processing object uses a control law to recommend how it would like to be

controlled. For example, a Parameter for frequency may want to be logarithmic, a

gain SV may want to be logarithmic with extra resolution around 0 dB.

If you have a Parameter that can take on any floating-point value between the

Minimum and Maximum, you still want to specify the control law to give a good

look and feel to the user. For example, in the case of a frequency variable, it is

often desirable that when the user turns an encoder or pushes the <up> control on

a spinner that the next value be logarithmically spaced from the previous value.

The control law may also be used to specify the granularity that a Parameter can

accept. For example, a gain Parameter may have a maximum resolution of .1 dB.

This control law is not needed in the case of an enumerated Parameter, as all steps

are known.

2.6.1.4 Flags

Bits 0, 2, and 3 are reserved. Bit 1 is the Sensor Attribute.

 0 = Non-Sensor

 1 = Sensor

This attribute is used in subscriptions to automatically set the type of subscription

to periodic or on change. Examples of sensor Parameters include output meters,

threshold meters, or power amp temperature. Non-sensor Parameters are things

like frequency or MIDI channel.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 11 of 91

2.7 HiQnet Addressing

HiQnet Addressing

HiQnet

Devices

Address

16 bits

Parameter

Index

16 Bits

VD

Address

8 Bits

Object Address

24 Bits

Addressing in HiQnet is split up into three main sections, a 16 bit HiQnet Device

address, a 32 bit field that designates the Virtual Device and Object and finally a

parameter Address that designates the correct parameter within the Object. The

System Explorer in System Architect always shows any of these addresses with a

trailing number enclosed in ó[]ô.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 12 of 91

2.7.1 HiQnet Device Address

The HiQnet Device address is often referred to as the HiQnet address in System

Architect. In the below example, the three Devices are addressed 1, 2 and 3.

These addresses are shown in the System Explorer and the Venue View.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 13 of 91

2.7.2 Virtual Device Address

The Virtual Device and Object Addresses comprise a 32 bit number, segmented

into an eight bit Virtual Device and a 24 bit Object address. Using the dbx 4800

as an example, you see that the default configuration shows three Virtual Devices,

the Device Manager(Shown with the Device Name ñDriveRack 4800ò), the

Processing Object Virtual Device(shown with the preset name of ñWide Openò)

and the Utilities Virtual Device. These have the Virtual Device Addresses of 0, 1,

and 2 respectively.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 14 of 91

2.7.3 Object Address

The Object Address in the System explorer is broken into its three eight-bit

sections. For example, the first Input Mixer Object in the DriveRack 4800 is

addressed [3.2.0]. The second mixer is addressed [3.2.1]. The Object Address will

be unique within that Virtual Device.

The fully qualified 48 bit address of the first mixer then is

[3(Device).0(VD).3.2.0(Object)]

2.7.4 Source & Destination Addresses in Messages

Some messages are specific as to the kind of HiQnet óitemô they may originate

from or can be sent to. An example is clearer ï the SetAttribute message may be

sent by a Device Manager Virtual Device, a Virtual Device or an Object. This

asymmetry in permissible Source and Destination addresses is documented using

the following convention:

óDEVICEô is a placeholder for any Device Address.

óVDô is a placeholder for any Virtual Device Address.

óOBJECTô is a placeholder for any Object Address.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 15 of 91

2.7.5 Parameter Index

The Parameter Index uniquely identifies the parameter within an Object.

Continuing with the example 4800, you will see that the Input Mixer has four

parameters: Source Select[0], Input Gain[1], Pink Noise On/Off[2], and Pink

Noise Gain[3].

2.7.6 Parameter Range

The range of a parameter can be found in the SetSV message string that is

copied to the clipboard. In the HiQnet String Settings in the options, ñUse

Placeholder for Parameter Valueò should be enabled (see section 5). Right-

click on a control on a panel and choose ñCopy HiQnet Parameter Stringò.

Paste in to a program such as notepad to find the SetSV message string and

which includes the range of the parameter.

02,19,00,00,00,22,00,33,00,00,00,00,00,01,11,06,11,00,01,

00,00,20,05,00,00,00,01,00,01,06,[Float (20 -

20000)]:XX,XX,XX,XX

The value where the XXôs are are where the value should be inserted.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 16 of 91

2.8 Alternate methods of finding a HiQnet address.

Sometimes it can be difficult to find exactly the correct parameter you need

within the System Explorer. There are two other good ways to find the addresses

you need.

2.8.1 Copy HiQnet Information

The simplest method to find the HiQnet address of an object is to locate the

object on a panel, right-click the object, and choose ñCopy HiQnet

Informationò. The figure below shows the right-click context menu when a

PEQ is right-clicked on an dbx SC 32.

You can then paste the HiQnet Information in to a program like Notepad

which will give you

Name(type of object): 6 - band PEQ

Node: (Hex):0x01, (Decimal):1

VD: (Hex):0x11, (Decimal):17

ObjectID: (Hex):0x061100, (Decimal):6.17.0

This provides you with the node address, virtual device address, and object

address. Combined these give you the overall HiQnet address of the object.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 17 of 91

2.8.2 Finding an Address using the Custom Panels and the
Properties Window

The simplest way to find an address when you donôt know it is to find the

parameter you want to control on a factory panel and then drag it to a custom

panel. In this example, to get the address for a gain in the input module of the

Crown 4200.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 18 of 91

1) Start a new custom panel by going to the Custom Panel tab and selecting

ñCreateò

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 19 of 91

2) Now open the Channel 1 Source selector factory panel.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 20 of 91

3) Next, holding down the <Control> key, drag the ñRoutedò fader to the

new custom panel

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 21 of 91

4) Right Click on the Control to access the Parameter Address Editor

5) The full address is now visible in the Parameter Address Window. In this

example, this is HiQnet Address 3, Virtual Device 0, Object Address

[5.40.1] and Parameter Index 0.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 22 of 91

3 HiQnet Message Format
The following section lists the detailed message formats for the common HiQnet

messages. See section 3.4.1 for an explanation of the datatypes and how they are

stored.

3.1 Header

This is the common header for HiQnet messages. The first field is for HiQnet

message version. The current HiQnet version is 0x02, please use this as the

default.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0xXX

MESSAGE LENGTH ULONG 0xXXXXXXXX

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0xXXXX

FLAGS UWORD 0x0000

HOP COUNT UBYTE 0x01

SEQUENCE NUMBER UWORD 0x0001

Optional óErrorô header (FLAGS=0x0008):

ERROR CODE UWORD 0x02

ERROR STRING STRING ά¢ƘŜ 9ǊǊƻǊ aŜǎǎŀƎŜέ

Optional óMulti-partô header (FLAGS=0x0040):

START SEQ. NO. UWORD 0x02

BYTES REMAINING ULONG 0xXXXXXXXX

Optional óSession Numberô header (FLAGS=0x0100):

SESSION NUMBER UWORD 0xXXXX

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 23 of 91

When using multiple header extensions in a single packet they must be added to

the end of the header in the same order as they are listed above.

A Device will send an error header back as a reply to a received message with a

header extension it does not understand. Older Devices do not support sessions,

for example. Some newer Devices require sessions always. Other Devices will

support sessions, but allow session-less communication. So always start a session

with a Hello(Query) with a session number, and if the Device replies with a

Hello(Error) header, then proceed with session-less communication with that

Device.

¶ If an error message is returned in response to a Hello message, a

MultiParamGet(NumParams=0) message will be used for backward

compatibility in order to start Keep Alives.

¶ See the sessions section.

Messages may originate from anywhere in the hierarchy ï

0xDEVICEVDOBJECT.

3.1.1 Version

The Version Number indicates the revision number of the entire protocol; it is not

used for differentiating between revisions of individual messages. HiQnet is

currently at revision 2. Devices that communicate with HiQnet version 1.0

include the dbx ZonePro family. All others use version 2.0.

3.1.2 Header Length

The Header Length is the size in bytes of the entire message header, including any

additional headers such as 'Error' or 'Multi-part'.

3.1.3 Message Length

The Message Length is the size in bytes of the entire message - from the

óVersionô field through to the last byte of the payload.

3.1.4 Source Address

The Source Address specifies the HiQnet address where the message has come

from; this is often used by the recipient for sending back reply messages.

3.1.5 Destination Address

The Destination Address specifies where the message is to be delivered to.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 24 of 91

3.1.6 Message ID

The Message ID is a unique identifier that indicates the method that the

destination Device must perform. If there is a payload, it is usually specific to the

type of method indicated by the Message ID. Product-specific IDs may also exist

and will be documented appropriately.

3.1.7 Flags

The Flags denote what kinds of options are active when set to ó1ô and are

allocated in the following manner:

Bit 15:

Reserved

Bit 14:

Reserved

Bit 13:

Reserved

Bit 12:

Reserved

Bit 11:

Reserved

Bit 10:

Reserved

Bit 9:

Reserved

Bit 8:

Session

Number

(header

extension)

Bit 7:

Reserved

Bit 6:

Multi-part

message

(header

extension)

Bit 5:

Guaranteed

Bit 4:

Reserved

Bit 3:

Error

(header

extension)

Bit 2:

Information

Bit 1:

Acknowledge-

ment

Bit 0:

Request

Acknowledge-

ment

Bit 5 must be set for any applications using TCP/IP only on the network

interface. This will ensure that any messages are sent guaranteed (TCP rather

than UDP).

3.1.8 Hop Count

The Hop Count denotes the number of network hops that a message has traversed

and is used to stop broadcast loops. This field should generally be defaulted to

0x05.

3.1.9 Sequence Number

The Sequence number is used to uniquely identify each HiQnet message leaving a

Device. This is primarily used for diagnostic purposes. The sequence number

starts at 0 on power-up and increments for each successive message the Routing

Layer sends to the Packet Layer. The Sequence Number rolls over at the top of its

range.

3.2 Types of Messages

3.2.1 Request Acknowledgement Message

The ReqAck flag is used to provide a message level service that can be used by

the sender to know when the recipient of the message has carried out the specified

action. When the message sender sets the ReqAck flag, the message recipient,

upon performing the specified action, will send back the same message to the

sender with the ReqAck flag cleared and the Ack flag set. This provides a

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 25 of 91

valuable mechanism because the Ack is not sent upon receipt of the message

which would mean ñI have received your request;ò instead by sending the Ack

upon performing the action this literally means ñI have done it.ò If the original

message had any data in its payload, that data is not sent back with the

acknowledge message. This mechanism can be used to key actions such as the

sending of the next message only once the recipient has serviced the first

message.

3.2.2 Acknowledge Message Flag

As specified above, a message with the Ack bit set means I have performed the

requested action.

3.2.3 Information Message Flag

The Information flag is normally used to denote a response to a request. Instead of

defining a new message ID for the reply to each request, we have decided to

encode the reply ID using the Information flag. For example, the response to a

Get message is also a Get with the Information flag set and the corresponding data

appended in the payload. Note that the Information and Ack flags may be used

together. If you receive a Get message with the ReqAck flag set, then your

response would be a Get with the Ack and Information flags sent and any

corresponding payload appended to the end.

The Info flag is also used to indicate unsolicited informational messages (a

message that is neither a request nor a response to a request). Again, the

Information flag simply means the message is not a request!

3.2.4 Error Message Flag

In the case of an error in a received message, the óerrorô flag must be set and an

error code and error string appended to the end of the message header. The

original message is then returned to the sender.

3.2.5 Guaranteed Message Flag

When set, the óguaranteedô flag indicates the message must be transmitted on a

network service with guaranteed delivery. A cleared flag denotes a preference for

the message to be sent via an unreliable, datagram service. In this latter case, the

Routing Layer may in some circumstances (such as proxy) choose to send the

message via the guaranteed service instead.

1 ï Guaranteed

0 ï Unreliable datagram

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 26 of 91

3.2.6 Multi-part Message Flag

When set, this flag indicates the message is part of a multi-part message sequence

and the message header is extended by the addition of the óMulti-partô header.

1 ï Multi -part message

0 ï Single-part message

Many Devices will not be able to send a single message large enough to contain

all the data they wish to transmit (such as the data set required for a preset

change). For this reason, we provide a means of sending multi-part messages

where the payload is spread over a number of messages, which together form all

the data required for a single method.

The algorithm for multi-part messages is as follows:

1. Preparing the first multi-part message header

a) Set the óMulti-partô flag.

b) Copy the óSequence Numberô to the óStart Sequence No.ô

c) Set óBytes Remainingô to be the data outstanding, including this data.

 - this is the total size of the payload, not including headers

d) Transmit the first message.

2. Preparing the remaining multi-part message headers

a) Set the óMulti-partô flag.

b) Set the óStart Sequence No.ô to that used in the first multi-part message.

c) Set 'Bytes Remaining' to be the data outstanding, including this data.

 - does not include the previous messages' payload sizes

d) Transmit the current message. This is the last message when 'Bytes

Remaining' is equal to this message's payload.

Destination knows when the last message is being received because the óBytes

Remainingô in the last message's multi-part header is the same as the size of the

payload in the last message.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 27 of 91

3.3 Device Level Methods

METHOD NAME MESSAGE ID PURPOSE

GetAttributes 0x010D DŜǘǎ ΨƴΩ ŀǘǘǊƛōǳǘŜ values from Object
or VD

GetVDList 0x011A Gets list of Virtual Devices in a Device

Store 0x0124 Stores local performance data

Recall 0x0125 Recalls local or venue-wide
performance data

Locate 0x0129 Requests a Device to identify itself to
the customer

3.3.1 Get Attributes

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x010D

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

NoOfAttributes UWORD 0x0003

AID UWORD 0x0000

AID UWORD 0x0001

AID UWORD 0x0002

INFORMATION (response to message):

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x010D

FLAGS UWORD

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 28 of 91

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

NoOfAttributes UWORD 0x0003

AID UWORD Zero-based Attribute ID (AID)

Data type UBYTE Enumerated Data Type of Attribute

Value ΨbΩ ōȅǘŜǎ Value of Attribute

AID UWORD Zero-based Attribute ID (AID)

Data type UBYTE Enumerated Data Type of Attribute

Value ΨbΩ ōȅǘŜǎ Value of Attribute

AID UWORD Zero-based Attribute ID (AID)

Data type UBYTE Enumerated Data Type of Attribute

Value ΨbΩ ōȅǘŜǎ Value of Attribute

3.3.2 GetVDList

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xFFFF00000000

MESSAGE ID UWORD 0x011A

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Workgroup Path STRING Workgroup asked to respond

INFORMATION (response):

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICE00000000

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x011A

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 29 of 91

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Workgroup Path STRING Workgroup that is replying

NumVDs UWORD 0x0004

VDAddress UBYTE 0

VDClassID UWORD Class Of Device Manager

VDAddress UBYTE

VDClassID UWORD

VDAddress UBYTE

VDClassID UWORD

VDAddress UBYTE

VDClassID UWORD

3.3.3 Store

The Store method saves various types of performance data into non-volatile local

storage such as FLASH.

UBYTE ubyStoreAction

UWORD uwStoreNumber

STRING strWorkgroup

UBYTE ubyScope

The óStore Actionô determines the type of data affected:

 0 ï Parameters (parameters only)

 1 ï Subscriptions (Subscriptions only)

 2 ï Scenes (1 to N PARAM + Subscriptions)

 3 ï Snapshots (All PARAMs + Subscriptions)

 4 ï Presets (Config + Snapshot)

5 ï Venue

The uwStoreNumber parameter identifies a local storage space and undergoes no

translation or mapping to another value.

The strWorkgroup parameter is not used and should be set to 0.

The ubyScope parameter is reserved for future definition.

Devices that are unable to perform the store operation will return an error.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 30 of 91

The Store(info) message allows a Device to indicate to a subscribed Device that a

storage location has been modified. The source of the data stored into non-volatile

storage is not inferred. The payload indicates the storage location that has been

modified.

Store(info) allows synchronization between multiple System Architects

subscribed to a Device whenever a change in the configuration state occurs.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVD000000

MESSAGE ID UWORD 0x0124

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Store Action UBYTE

Store Number UWORD

Workgroup Path STRING Not Used ς Set Length to 0.

Scope UBYTE Reserved for Automation

INFORMATION:

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVD000000

MESSAGE ID UWORD 0x0124

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Store Action UBYTE

Store Number UWORD

Workgroup Path STRING Not Used ς Set Length to 0.

Scope UBYTE Reserved for Automation

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 31 of 91

3.3.4 Recall

Activates various kinds of performance data.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVD000000

MESSAGE ID UWORD 0x0125

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Recall Action UBYTE

Recall Number UWORD

Workgroup Path STRING Workgroup doing Recall Venue

Scope UBYTE Reserved for Automation

3.3.5 Recall Action Determines Type of Data Affected

Recall Action

 0 ï Parameters (parameters only)

 1 ï Subscriptions (Subscriptions only)

 2 ï Scenes (1 to N PARAM + Subscriptions)

 3 ï Snapshots (All PARAMs + Subscriptions)

 4 ï Presets (Config + Snapshot)

 5 ï Venue

For actions 0 to 4, Recall Number identifies a local storage space and undergoes

no translation or mapping to another value.

For action 5, Recall Number identifies a óvenue recall numberô, which each

Device translates into a ólocal recallô and ólocal actionô via the óVenue Table'.

The Venue Table for Devices can be examined and modified through System

Architect. See the Tools/Venue Recall button on the ribbon.

Some Devices are not required to do anything for a specific óRecall Numberô;

these may enter the enumerated value óNo Actionô in their Venue Table.

The Workgroup Path indicates which Devices are to respond to a óvenue recallô.

Devices that are outside of the specified workgroup will take no action. For all

other recall actions this parameter is not used and should be set to 0.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 32 of 91

The Scope parameter is reserved for future definition.

Devices that are unable to perform the requested recall will return an error. See

the Event Log section for the format of the Event Log Subscription Information

message that is sent from Devices when an errors occur.

3.3.6 Locate

The ólocateô method requests that the receiver makes itself óvisibleô to the

customer by flashing its óLocate LEDsô. If available, these are typically located on

the hardware panel of the product.

The locate method is compulsory for Device Manager Virtual Devices. Virtual

Devices and Objects may optionally choose to support it.

The method has a single parameter:

UWORD uwTime - Locate time in milliseconds

0x0000 ï Turn off locate LEDs

0xFFFF - Turn on locate LEDs.

Time periods between 0x0001 and 0xFFFE indicate a period of time during which

the locate LEDs must flash. After the time period is completed the LEDs must be

turned off.

The locate method will flash the LEDs at a rate of 2Hz. This allows the ólocateô

signal to be differentiated from product-specific flashes which may be active on

the same LED (some products only have one LED).

3.3.7 Locate Message

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0xXX

MESSAGE LENGTH ULONG 0xXXXXXXXX

SRC HIQNETADDR 0xDEVICEVDOBJECT

DEST HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0129

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 33 of 91

tŀȅƭƻŀŘΧ

Time UWORD Locate time in milliseconds

HiQnet Serial Number BLOCK Serial number of Device to be located

3.4 Event Log

Each HiQnet Device has an Event Log. Items reported into the Event Log such as

protocol errors or product-specific errors can be transmitted onto the network. If

you subscribe to Device fooôs Event Log and Device bar sends foo a malformed

packet, because you are subscribed to fooôs Event Log, foo will send you an event

log message telling you it has received a bad message from Device bar.

3.4.1 Event Log Data

3.4.1.1 Category

Category identifies a sub-system within the product into which associated Event

IDs are grouped. There may be no more than 32 event categories, those already

declared as are follows:

0 ï Unassigned

1 ï Application

2 ï Configuration

3 ï Audio Network

4 ï Control Network

5 ï Vendor Network

6 ï Startup

7 ï DSP

8 ï Miscellaneous

9 ï Control Logic

10 ï Foreign Protocol

11 ï Digital I/O

12 ï Unassigned

13 ï Unassigned

14 ï Control Surface

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 34 of 91

15 ï 31 Unassigned

The Category is represented in some messages by an enumerated UWORD and in

others as a ULONG bit-field.

3.4.1.2 Event ID

The Event ID identifies the actual event that triggered a log entry. These are held

within a zero based enumeration with the range of a UWORD. The Event ID may

be óoverloadedô across event categories; that is to say, an Event ID such as zero

may mean óDevice Startedô within one Category and óPreset Recalledô in another.

The Event ID range is divided into two sections:

0x0000 ï 0x7FFF Ą Global Event IDs common across all products

0x8000 ï 0xFFFF Ą Custom Event IDs specific to a Device Manager Class ID

3.4.1.3 Event ID Definitions

The Global Event IDs for each category are given below:

Control Network Event IDs

Event ID Possible causes

0x0001 ς Invalid Version The version number in the HiQnet header is unknown.

0x0002 ς Invalid Length
The header length specified in the packet is wrong.
There are not enough bytes in packet payload to hold
message type.

0x0003 ς Invalid Virtual Device
Tried to Create VD on an invalid VD.
Set/Get/Subscribe/Attributes referenced an invalid
VD.

0x0004 ς Invalid Object Set/Get/Subscription referenced an invalid object.

0x0005 ς Invalid Parameter
Set/Get/Subscribe/Attributes referenced an invalid
Parameter.

0x0006 ς Invalid Message ID Received a message with an unknown Message ID.

0x0007 ς Invalid Value

Tried to set an attribute with a value that is out of
range.
Referenced an invalid scene number, or encountered
ŀƴ ƛƴǾŀƭƛŘ ǎŎŜƴŜ άŘŀǘŀέ ƭŜƴƎǘƘΦ
Referenced an invalid preset number.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 35 of 91

0x0008 ς Resource Unavailable

Running out of internal software resources.
Device is in a state where it cannot process the
current request (flashing, configuration, etc).
Cannot set Device ID, subscription, Parameter value,
or the configuration is locked.

0x0009 ς Unsupported

Received a message that is considered obsolete.
Trying to flash a Device that does not support flashing.
Trying to add unsupported or invalid (to long)
attribute types.

0x000A ς Invalid Virtual Device Class Referenced an invalid VD Class.

0x000B ς Invalid Object Class Referenced an invalid Object Class.

0x000C ς Invalid Parameter Class Referenced an invalid Parameter Class.

0x000D ς Invalid Attribute ID Get/Set referenced an invalid Attribute ID.

0x000E ς Invalid DataType Set referenced an invalid data type (class).

0x000F ς Invalid Configuration

Began creating a new VD and never finished.
Lost connection while creating a new VD.
¢ǊȅƛƴƎ ǘƻ ŎƻƴŦƛƎǳǊŜ ŀ 5ŜǾƛŎŜ ǘƘŀǘ ƛǎ άƻǿƴŜŘέ ōȅ ŀ
different Device.

0x0010 ς Flash Error
An error was encountered during the requested flash
operation.

0x0011 ς Not a Router
Another Device has requested a guaranteed delivery
connection through this Device to a third Device, and
this Device is not a router.

3.4.2 Requesting Event Log Client Subscriptions

A client requests an event log subscription by sending a

SubscribeEventLogError! Reference source not found. message to the Device

Manager Virtual Device of the Device it is interested in receiving events from.

The óCategory Filterô indicates which categories of event the client wishes to hear

about.

The category is a field of type ULONG, a ó1ô indicates a subscription; ó0ô means

no action (it does not mean unsubscribe). Each category is represented by a bit in

the ULONG. The same client may subscribe multiple times to the same Device.

The server receiving the SubscribeEventLog message will perform an OR

operation on the current filter settings and the ones in the message payload; the

result will be the actual categories subscribed to:

Current Filter Settings: 00000000000000000000000100010011

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 36 of 91

Payload Filters: 00000000000000010000001000010000

Resulting Subscription: 00000000000000010000001100010011

The óMax Data Sizeô allows the client a chance to limit the size of any óadditional

dataô sent to it as part of an event log entry. It is the serverôs responsibility to

ensure this data is not larger than the figure specified by the client.

3.4.2.1 Sending Subscribed Events

Once an event log subscription is activated, the server will send the client a

RequestLogInfo(I) message. Typically, there will be one message per event, but

the server is able to package multiple events per message and so the client must

be able to handle a message containing multiple events.

3.4.2.2 Cancelling Client Subscriptions

A client may cancel a category of event log subscription by sending the server an

"Unsubscribe Event Log" message. The óCategoryô in the payload specifies the

category of events the client is unsubscribing from; this may be a single category

or multiple categories.

Event Log subscriptions, along with all other types of subscriptions, are

automatically cancelled if you send the Device a Goodbye message.

A ó1ô bit represents óunsubscribeô, a ó0ô represents ódo nothingô.

For example:

 Current Filter Settings: 00000000000000010000001100010011

 Payload Filters: 00000000000000000000000000000011

 Resulting Subscription: 00000000000000010000001100010000

3.4.2.3 Protocol Errors

A Protocol error is a special kind of event which occurs when a Device receives a

HiQnet message it cannot service. This may be for any number of reasons but

usually because the message is incorrectly formatted, addressed to the wrong

destination, or contains out of range parameter data. All HiQnet Devices must be

able to generate and handle error messages.

The error must be reported back to the message sender by returning a HiQnet

óerrorô message. The error message contains both an error code and a network-

byte-ordered Unicode string representation of the error which may be used by a

technician for diagnosing the fault. The protocol error codes which may be used

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 37 of 91

in the message are the same as the Event IDs enumerated in the óControl

Networkô category of the Event Logging section.

Unlike event logging, when a protocol error occurs, the error message is always

returned to the sender, regardless of any event log settings.

3.4.2.4 Subscribe Event Log Messages

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0115

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Max Data Size UWORD aŀȄ ǎƛȊŜ ƻŦ Ψ!ŘŘƛǘƛƻƴŀƭ 5ŀǘŀΩ ƛƴ ŀƴȅ
RequestEventLog(I) message

Category Filter ULONG

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 38 of 91

3.4.2.5 Unsubscribe Event Log

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x012B

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Category ULONG

3.4.3 Request Event Log

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x012C

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 39 of 91

3.4.4 Request Event Log INFORMATION (response):

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x012C

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

No Of Entries UWORD Number of entries in log

Category UWORD Enumerated Category event falls in

Event ID UWORD Enumerated ID of this event

Priority UBYTE 3 enumerated priority levels

Sequence Number ULONG Incrementing event instance counter

Time STRING HH:MM:SS

Date STRING YEAR-MO-DA

Information STRING Description of event

Additional Data BLOCK Application specific extra data

Category UWORD Enumerated Category event falls in

Event ID UWORD Enumerated ID of this event

Priority UBYTE 3 enumerated priority levels

Sequence Number ULONG Incrementing event instance counter

Time STRING 23:16:23

Date STRING 2004-12-15

Information STRING Description of event

Additional Data BLOCK Application specific extra data

3.4.4.1 Priority

The Priority field allows events in the Event Log to be assigned one of three

levels of importance, these are enumerated as follows:

 0 - Fault

 1 - Warning

 2 - Information

The Priority is represented by a UBYTE.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 40 of 91

3.4.4.2 Sequence Number

The Sequence Number denotes the order that events occurred in. This field is

important for products that do not have a real time clock with which to generate

the time and date fields of the event log. The sequence number starts at 0 the first

time the unit is powered on and continues to increment by one for each generated

event. The sequence number must be preserved in non-volatile storage so that it

persists across power cycles and firmware upgrades.

The Sequence Number is a ULONG.

3.4.4.3 Time

Time represents when the event was generated and logged. The format is 24 hour

clock, with two digits for hours, minutes & seconds separated by a colon For

example:

17:25:47

The Time is transported via the STRING data-type.

3.4.4.4 Date

Date represents the day the event was generated and logged. The format is year,

month & day separated by hyphens. For example:

2004-12-13

The Date is transported via the STRING data-type.

3.4.4.5 Information

This is a string giving any additional information about the event. The data-type is

STRING.

3.4.4.6 Additional Data

Additional Data is a BLOCK field for events which carry event-specific data.

This could for example, be a copy of a HiQnet message which when processed

triggered an internal error within a Device. The format and purpose of the data

may also be event-specific, it is not required that the recipient should necessarily

be able to understand or want to use the extra data.

The maximum size of this data is a decision left open to the product designer.

However, the product must be able to truncate the data to the maximum size

requested by a client that subscribed to the event log.

If an event does not carry additional data then the length of the BLOCK must be

set to 0.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 41 of 91

3.5 Introduction to Parameters

3.5.1 Data Type Definition

A small set of data types are used in HiQnet to represent parameter values. All

parameters must use one of the following data types:

Name Ψ/Ω 5ŜŎƭŀǊŀǘƛƻƴ Range Bytes Enum

eratio
n

BYTE Char -128 to 127 1 0

UBYTE unsigned char 0 to 255 1 1

WORD Short -32768 to 32767 2 2

UWORD unsigned short 0 to 65535 2 3

LONG Long -2147,483648 to
2147,483647

4 4

ULONG unsigned long 0 to 4,294,967,926 4 5

FLOAT32 Float As IEEE-754 4 6

FLOAT64 Double As IEEE-754 8 7

BLOCK N/A 0 to 65535 bytes N/A 8

STRING N/A 0 to 32767 chars N/A 9

LONG64 N/A Very Big 8 10

ULONG6
4

N/A Huge 8 11

The format for BLOCK is a variable length of memory that may be used for any

kind of data. The first two bytes are a UWORD that contains the size of the block

in bytes not including the UWORD itself. The maximum size of the BLOCK is

constrained to 65536 bytes. Because blocks can be used to represent any kind of

structured data, it is assumed that the sending and receiving sides know how to

format the data.

Strings are Unicode and stored using the String data type. Like BLOCK, the

actual string data is prefixed with a UWORD count indicating the length of the

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 42 of 91

string in bytes. Strings sent over the network are to include the NULL character at

the end of the string. Because we are using Unicode, the length used in the String

format is 2 * (strlen + 1). For example: for the string ñHello World,ò the count

will be 24. Note, strings are network-byte-ordered Unicode while on the wire.

3.5.2 Sensor/Non-Sensor

Sensor parameters are those that update periodically such as a meter. Non-sensors

are normal parameters that update only when changed. Examples of non-sensors

include Frequency or Gain.

3.6 MultiParamSet

Set óNumParamô parameters values within an object or Virtual Device.

óParam_IDô specifies the particular parameter to set. The payload example below

shows an array of three Parameters.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0100

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

NumParam UWORD 3

Param_ID UWORD

Param_DataType UBYTE

Value ΨbΩ ōȅǘŜǎ

Param_ID UWORD

Param_DataType UBYTE

Value ΨbΩ ōȅǘŜǎ

Param_ID UWORD

Param_DataType UBYTE

Value ΨbΩ ōȅǘŜǎ

3.7 MultiParamGet

Get óNumParamô parameters values within an object or Virtual Device.

óParam_IDô specifies the particular parameter to get.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 43 of 91

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0103

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

NumParam UWORD 0x0003

Param_ID UWORD

Param_ID UWORD

Param_ID UWORD

3.7.1 INFORMATION:

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0103

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

NumParam UWORD 0x0003

Param_ID UWORD

Param_DataType UBYTE

Param_Value ΨbΩ ōȅǘŜǎ

Param_ID UWORD

Param_DataType UBYTE

Param_Value ΨbΩ ōȅǘŜǎ

Param_ID UWORD

Param_DataType UBYTE

Param_Value ΨbΩ ōȅǘŜǎ

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 44 of 91

3.8 MultiParamSubscribe

Subscriptions are used so that the client may be automatically notified when a

parameter has been changed. Because the HiQnet model is a peer-to-peer model,

you may specify the receiving destination parameter. This might be useful when

your controller only has a few parameters in it that you want to map across the

network.

The sensor rate is the fastest that the client wishes to receive updates for sensor

parameters. Based on workload, the server may choose to send the updates

slower. The sensor rate is ignored for non-sensor parameters.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x010F

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

No of Subscriptions UWORD 2

Publisher Param_ID UWORD

Subscription Type UBYTE 0 ς Set to 0

Subscriber Address HIQNETADDR

Subscriber Param_ID UWORD

Reserved UBYTE 0 ς Reserved

Reserved UWORD 0 ς Reserved

Sensor Rate UWORD Period in milliseconds

Publisher Param_ID UWORD

Subscription Type UBYTE 0 ς Set to 0

Subscriber Address HIQNETADDR

Subscriber Param_ID UWORD

Reserved UBYTE 0 ς Reserved

Reserved UWORD 0 - Reserved

Sensor Rate UWORD Period in milliseconds

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 45 of 91

3.9 MultiParamUnsubscribe

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0112

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

tŀȅƭƻŀŘΧ

Subscriber Address HIQNETADDR

Number of Subscriptions UWORD 2

Publisher Param_ID UWORD

Subscriber Param_ID UWORD

Publisher Param_ID UWORD

Subscriber Param_ID UWORD

